IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v6y2016i4d10.1007_s13235-015-0166-y.html
   My bibliography  Save this article

The Subgame-Consistent Shapley Value for Dynamic Network Games with Shock

Author

Listed:
  • Leon Petrosyan

    (Saint Petersburg State University)

  • Artem Sedakov

    (Saint Petersburg State University)

Abstract

In the paper, cooperative repeated network games containing network formation stages are studied. After the first network formation stage, a particular player with a given probability may stop influencing other players by removing all her links and receiving zero payoffs. This effect is called “shock.” The effect of shock may appear only once, and the stage number, at which shock appears, is chosen at random. In the cooperative scenario of the game, subgame consistency of the Shapley value, based on a characteristic function, which is constructed in a special way, is investigated. To prevent players from breaking the cooperative agreement, a mechanism of stage payments—so-called imputation distribution procedure—is designed.

Suggested Citation

  • Leon Petrosyan & Artem Sedakov, 2016. "The Subgame-Consistent Shapley Value for Dynamic Network Games with Shock," Dynamic Games and Applications, Springer, vol. 6(4), pages 520-537, December.
  • Handle: RePEc:spr:dyngam:v:6:y:2016:i:4:d:10.1007_s13235-015-0166-y
    DOI: 10.1007/s13235-015-0166-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-015-0166-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-015-0166-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stef Tijs & Anne van den Nouweland & Bhaskar Dutta, 1998. "Link formation in cooperative situations," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(2), pages 245-256.
    2. Corbae, Dean & Duffy, John, 2008. "Experiments with network formation," Games and Economic Behavior, Elsevier, vol. 64(1), pages 81-120, September.
    3. Vega-Redondo,Fernando, 2007. "Complex Social Networks," Cambridge Books, Cambridge University Press, number 9780521857406, September.
    4. Feri, Francesco, 2007. "Stochastic stability in networks with decay," Journal of Economic Theory, Elsevier, vol. 135(1), pages 442-457, July.
    5. Jackson, Matthew O. & Watts, Alison, 2002. "On the formation of interaction networks in social coordination games," Games and Economic Behavior, Elsevier, vol. 41(2), pages 265-291, November.
    6. Goyal, Sanjeev & Vega-Redondo, Fernando, 2005. "Network formation and social coordination," Games and Economic Behavior, Elsevier, vol. 50(2), pages 178-207, February.
    7. Venkatesh Bala & Sanjeev Goyal, 2000. "A Noncooperative Model of Network Formation," Econometrica, Econometric Society, vol. 68(5), pages 1181-1230, September.
    8. Haller, Hans, 2012. "Network extension," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 166-172.
    9. Galeotti, Andrea & Goyal, Sanjeev & Kamphorst, Jurjen, 2006. "Network formation with heterogeneous players," Games and Economic Behavior, Elsevier, vol. 54(2), pages 353-372, February.
    10. Vega-Redondo,Fernando, 2007. "Complex Social Networks," Cambridge Books, Cambridge University Press, number 9780521674096, September.
    11. Watts, Alison, 2001. "A Dynamic Model of Network Formation," Games and Economic Behavior, Elsevier, vol. 34(2), pages 331-341, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parilina, Elena M. & Zaccour, Georges, 2022. "Payment schemes for sustaining cooperation in dynamic games," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    2. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    3. Olaizola Ortega, María Norma & Valenciano Llovera, Federico, 2011. "Network formation under institutional constraints," IKERLANAK info:eu-repo/grantAgreeme, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    4. Olaizola, Norma & Valenciano, Federico, 2014. "Asymmetric flow networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 566-579.
      • Olaizola Ortega, María Norma & Valenciano Llovera, Federico, 2012. "Asymmetric flow networks," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    5. Pongou, Roland & Serrano, Roberto, 2016. "Volume of trade and dynamic network formation in two-sided economies," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 147-163.
    6. Filippo Vergara Caffarelli, 2009. "Networks with decreasing returns to linking," Temi di discussione (Economic working papers) 734, Bank of Italy, Economic Research and International Relations Area.
    7. Joost Vandenbossche & Thomas Demuynck, 2013. "Network Formation with Heterogeneous Agents and Absolute Friction," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 23-45, June.
    8. Rong, Rong & Houser, Daniel, 2015. "Growing stars: A laboratory analysis of network formation," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 380-394.
    9. Olaizola, Norma & Valenciano, Federico, 2013. "Network formation under linking constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5194-5205.
    10. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    11. Pandey, Siddhi Gyan, 2021. "Evolution of cooperative networks," Working Papers 21/346, National Institute of Public Finance and Policy.
    12. Francesco Feri & Miguel Meléndez-Jiménez, 2013. "Coordination in evolving networks with endogenous decay," Journal of Evolutionary Economics, Springer, vol. 23(5), pages 955-1000, November.
    13. Simon Weidenholzer, 2010. "Coordination Games and Local Interactions: A Survey of the Game Theoretic Literature," Games, MDPI, vol. 1(4), pages 1-35, November.
    14. De Jaegher, K. & Kamphorst, J.J.A., 2015. "Minimal two-way flow networks with small decay," Journal of Economic Behavior & Organization, Elsevier, vol. 109(C), pages 217-239.
    15. Liu, Xiaodong & Patacchini, Eleonora & Zenou, Yves & Lee, Lung-Fei, 2011. "Criminal Networks: Who is the Key Player?," Research Papers in Economics 2011:7, Stockholm University, Department of Economics.
    16. Chenghong Luo & Ana Mauleon & Vincent Vannetelbosch, 2021. "Network formation with myopic and farsighted players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1283-1317, June.
    17. Fosco, Constanza & Mengel, Friederike, 2011. "Cooperation through imitation and exclusion in networks," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 641-658, May.
    18. Pongou, Roland & Serrano, Roberto, 2013. "Dynamic Network Formation in Two-Sided Economies," MPRA Paper 46021, University Library of Munich, Germany.
    19. Ping Sun & Elena Parilina, 2022. "Impact of Utilities on the Structures of Stable Networks with Ordered Group Partitioning," Dynamic Games and Applications, Springer, vol. 12(4), pages 1131-1162, December.
    20. Filippo Vergara Caffarelli, 2017. "One-Way Flow Networks with Decreasing Returns to Linking," Dynamic Games and Applications, Springer, vol. 7(2), pages 323-345, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:6:y:2016:i:4:d:10.1007_s13235-015-0166-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.