IDEAS home Printed from https://ideas.repec.org/a/spr/digfin/v3y2021i3d10.1007_s42521-021-00040-8.html
   My bibliography  Save this article

Modeling asset allocations and a new portfolio performance score

Author

Listed:
  • Apostolos Chalkis

    (National and Kapodistrian University of Athens
    ATHENA Research and Innovation Center)

  • Emmanouil Christoforou

    (National and Kapodistrian University of Athens
    ATHENA Research and Innovation Center)

  • Ioannis Z. Emiris

    (National and Kapodistrian University of Athens
    ATHENA Research and Innovation Center)

  • Theodore Dalamagas

    (ATHENA Research and Innovation Center)

Abstract

We discuss and extend a powerful, geometric framework to represent the set of portfolios, which identifies the space of asset allocations with the points lying in a convex polytope. Based on this viewpoint, we survey certain state-of-the-art tools from geometric and statistical computing to handle important and difficult problems in digital finance. Although our tools are quite general, in this paper, we focus on two specific questions. The first concerns crisis detection, which is of prime interest for the public in general and for policy makers in particular because of the significant impact that crises have on the economy. Certain features in stock markets lead to this type of anomaly detection: Given the assets’ returns, we describe the relationship between portfolios’ return and volatility by means of a copula, without making any assumption on investors’ strategies. We examine a recent method relying on copulae to construct an appropriate indicator that allows us to automate crisis detection. On real data the indicator detects all past crashes in the cryptocurrency market and from the DJ600-Europe index, from 1990 to 2008, the indicator identifies correctly 4 crises and issues one false positive for which we offer an explanation. Our second contribution is to introduce an original computational framework to model asset allocation strategies, which is of independent interest for digital finance and its applications. Our approach addresses the crucial question of evaluating portfolio management, and is relevant the individual managers as well as financial institutions. To evaluate portfolio performance, we provide a new portfolio score, based on the aforementioned framework and concepts. In particular, it relies on statistical properties of portfolios, and we show how they can be computed efficiently.

Suggested Citation

  • Apostolos Chalkis & Emmanouil Christoforou & Ioannis Z. Emiris & Theodore Dalamagas, 2021. "Modeling asset allocations and a new portfolio performance score," Digital Finance, Springer, vol. 3(3), pages 333-371, December.
  • Handle: RePEc:spr:digfin:v:3:y:2021:i:3:d:10.1007_s42521-021-00040-8
    DOI: 10.1007/s42521-021-00040-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42521-021-00040-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42521-021-00040-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao Zhao & Olivier Ledoit & Hui Jiang, 2019. "Risk reduction and efficiency increase in large portfolios: leverage and shrinkage," ECON - Working Papers 328, Department of Economics - University of Zurich, revised Jan 2020.
    2. Taras Bodnar & Solomiia Dmytriv & Nestor Parolya & Wolfgang Schmid, 2017. "Tests for the weights of the global minimum variance portfolio in a high-dimensional setting," Papers 1710.09587, arXiv.org, revised Jul 2019.
    3. Taras Bodnar & Stepan Mazur & Krzysztof Podgórski, 2017. "A test for the global minimum variance portfolio for small sample and singular covariance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(3), pages 253-265, July.
    4. Banerjee, Anurag & Hung, Chi-Hsiou, 2011. "Informed momentum trading versus uninformed "naive" investors strategies," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3077-3089, November.
    5. Amen Aissi Harzallah & Mouna Boujelbene Abbes, 2020. "The Impact of Financial Crises on the Asset Allocation: Classical Theory Versus Behavioral Theory," Journal of Interdisciplinary Economics, , vol. 32(2), pages 218-236, July.
    6. Taras Bodnar & Wolfgang Schmid, 2009. "Econometrical analysis of the sample efficient frontier," The European Journal of Finance, Taylor & Francis Journals, vol. 15(3), pages 317-335.
    7. Dominique Guegan & Ludovic Calès & Monica Billio, 2011. "A Cross-Sectional Score for the Relative Performance of an Allocation," Post-Print halshs-00646070, HAL.
    8. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof & Tyrcha, Joanna, 2018. "Tangency portfolio weights for singular covariance matrix in small and large dimensions: estimation and test theory," Working Papers 2018:1, Örebro University, School of Business.
    9. Lo Duca, Marco & Koban, Anne & Basten, Marisa & Bengtsson, Elias & Klaus, Benjamin & Kusmierczyk, Piotr & Lang, Jan Hannes & Detken, Carsten & Peltonen, Tuomas, 2017. "A new database for financial crises in European countries," Occasional Paper Series 194, European Central Bank.
    10. Vera Ivanyuk, 2021. "Formulating the Concept of an Investment Strategy Adaptable to Changes in the Market Situation," Economies, MDPI, vol. 9(3), pages 1-19, June.
    11. Raymond Kan & Daniel R. Smith, 2008. "The Distribution of the Sample Minimum-Variance Frontier," Management Science, INFORMS, vol. 54(7), pages 1364-1380, July.
    12. repec:dau:papers:123456789/4688 is not listed on IDEAS
    13. Grinblatt, Mark & Titman, Sheridan, 1994. "A Study of Monthly Mutual Fund Returns and Performance Evaluation Techniques," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(3), pages 419-444, September.
    14. Billio, Monica & Getmansky, Mila & Pelizzon, Loriana, 2012. "Dynamic risk exposures in hedge funds," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3517-3532.
    15. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof, 2016. "Singular inverse Wishart distribution and its application to portfolio theory," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 314-326.
    16. Harry Markowitz, 1956. "The optimization of a quadratic function subject to linear constraints," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 111-133, March.
    17. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    18. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    19. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mårten Gulliksson & Stepan Mazur, 2020. "An Iterative Approach to Ill-Conditioned Optimal Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 773-794, December.
    2. Karlsson, Sune & Mazur, Stepan & Muhinyuza, Stanislas, 2020. "Statistical Inference for the Tangency Portfolio in High Dimension," Working Papers 2020:10, Örebro University, School of Business.
    3. Apostolos Chalkis & Emmanouil Christoforou & Ioannis Z. Emiris & Theodore Dalamagas, 2020. "Modeling asset allocation strategies and a new portfolio performance score," Papers 2012.05088, arXiv.org, revised Sep 2021.
    4. Ludovic Cales & Apostolos Chalkis & Ioannis Z. Emiris & Vissarion Fisikopoulos, 2018. "Practical volume computation of structured convex bodies, and an application to modeling portfolio dependencies and financial crises," Papers 1803.05861, arXiv.org.
    5. Monica Billio & Bertrand Maillet & Loriana Pelizzon, 2022. "A meta-measure of performance related to both investors and investments characteristics," Annals of Operations Research, Springer, vol. 313(2), pages 1405-1447, June.
    6. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    7. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    8. Bodnar, Taras & Parolya, Nestor & Thorsén, Erik, 2023. "Is the empirical out-of-sample variance an informative risk measure for the high-dimensional portfolios?," Finance Research Letters, Elsevier, vol. 54(C).
    9. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    10. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    11. Farrukh Javed & Stepan Mazur & Erik Thorsén, 2024. "Tangency portfolio weights under a skew-normal model in small and large dimensions," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 75(7), pages 1395-1406, July.
    12. Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.
    13. Mårten Gulliksson & Anna Oleynik & Stepan Mazur, 2024. "Portfolio Selection with a Rank-Deficient Covariance Matrix," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2247-2269, June.
    14. Bodnar, Taras & Lindholm, Mathias & Niklasson, Vilhelm & Thorsén, Erik, 2022. "Bayesian portfolio selection using VaR and CVaR," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    15. Taras Bodnar & Nestor Parolya & Erik Thorsen, 2021. "Dynamic Shrinkage Estimation of the High-Dimensional Minimum-Variance Portfolio," Papers 2106.02131, arXiv.org, revised Nov 2021.
    16. Drin, Svitlana & Mazur, Stepan & Muhinyuza, Stanislas, 2023. "A test on the location of tangency portfolio for small sample size and singular covariance matrix," Working Papers 2023:11, Örebro University, School of Business.
    17. Alfelt, Gustav & Mazur, Stepan, 2020. "On the mean and variance of the estimated tangency portfolio weights for small samples," Working Papers 2020:8, Örebro University, School of Business.
    18. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    19. Johnson, Michael & O'Connor, Ian & Malcolm, Bill, 2006. "Agribusiness Assets in Investment Portfolios," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139794, Australian Agricultural and Resource Economics Society.
    20. Guo, Xu & Lien, Donald & Wong, Wing-Keung, 2015. "Good Approximation of Exponential Utility Function for Optimal Futures Hedging," MPRA Paper 66841, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:3:y:2021:i:3:d:10.1007_s42521-021-00040-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.