IDEAS home Printed from https://ideas.repec.org/a/spr/decisn/v47y2020i3d10.1007_s40622-020-00251-9.html
   My bibliography  Save this article

Evaluating the greenness of hydroelectric projects of Northeast India: a study with special reference to the Tipaimukh project

Author

Listed:
  • Nazrana Begam Choudhury

    (Assam University)

  • Soma Roy Dey Choudhury

    (Assam University)

Abstract

Urbanization, industrialization and human population explosion not only increased the global power demand, but also led to global warming, pollution and climate change. This encouraged production of power from renewable sources, and thus, hydropower development has been focused. Today, there is more than 1300 GW of installed hydropower across the world, and most of the hydroelectric projects (HEPs) are multi-purpose which includes irrigation, flood and drought mitigation and tourism. Although credited as cheap, clean and green, recent studies demonstrate that the reservoirs of HEPs produce enormous quantities of greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). A large number of estimates on the amount of GHGs from HEPs are available from across the globe. India is next only to USA and China in terms of number of large dams, and thousands of new dams are being planned or constructed, especially in the northeastern part. However, none of these projects have been analyzed in terms of production of GHGs, which is an essential prerequisite for developing such projects and to determine whether carbon emission reduction credits can be accorded or not. The present study was conducted to determine greenness of some of the HEPs of Northeast India in terms of emission of GHGs, and eligibility of the projects for carbon emission reduction credits. Further, the emission of different GHGs through various processes from the Tipaimukh HEP (Manipur) was estimated. In view of the findings, we have provided recommendations, which may be helpful in decision-making process.

Suggested Citation

  • Nazrana Begam Choudhury & Soma Roy Dey Choudhury, 2020. "Evaluating the greenness of hydroelectric projects of Northeast India: a study with special reference to the Tipaimukh project," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(3), pages 293-302, September.
  • Handle: RePEc:spr:decisn:v:47:y:2020:i:3:d:10.1007_s40622-020-00251-9
    DOI: 10.1007/s40622-020-00251-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40622-020-00251-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40622-020-00251-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varun, & Prakash, Ravi & Bhat, I.K., 2012. "Life cycle greenhouse gas emissions estimation for small hydropower schemes in India," Energy, Elsevier, vol. 44(1), pages 498-508.
    2. Jim Giles, 2006. "Methane quashes green credentials of hydropower," Nature, Nature, vol. 444(7119), pages 524-524, November.
    3. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    4. Mirza Sadaqat Huda, 2017. "Envisioning the future of cooperation on common rivers in South Asia: a cooperative security approach by Bangladesh and India to the Tipaimukh Dam," Water International, Taylor & Francis Journals, vol. 42(1), pages 54-72, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuerong Li & Faliang Gui & Qingpeng Li, 2019. "Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    2. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    3. Zhang, Jing & Luo, Chuan-Yan & Curtis, Zachary & Deng, Shi-huai & Wu, Yang & Li, Yuan-wei, 2015. "Carbon dioxide emission accounting for small hydropower plants—A case study in southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 755-761.
    4. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    5. Li, Zhe & Du, Hailong & Xiao, Yan & Guo, Jinsong, 2017. "Carbon footprints of two large hydro-projects in China: Life-cycle assessment according to ISO/TS 14067," Renewable Energy, Elsevier, vol. 114(PB), pages 534-546.
    6. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    7. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    8. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    9. Ciliberti, Carlo & Jordaan, Sarah M. & Smith, Stephen V. & Spatari, Sabrina, 2016. "A life cycle perspective on land use and project economics of electricity from wind and anaerobic digestion," Energy Policy, Elsevier, vol. 89(C), pages 52-63.
    10. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
    11. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    12. Heetae Kim & Petter Holme, 2015. "Network Theory Integrated Life Cycle Assessment for an Electric Power System," Sustainability, MDPI, vol. 7(8), pages 1-15, August.
    13. Alsaleh, Mohd & Abdul-Rahim, A.S., 2022. "The pathway toward pollution mitigation in EU28 region: Does hydropower growth make a difference?," Renewable Energy, Elsevier, vol. 185(C), pages 291-301.
    14. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    15. Taitiya Kenneth Yuguda & Yi Li & Bobby Shekarau Luka & Goziya William Dzarma, 2020. "Incorporating Reservoir Greenhouse Gas Emissions into Carbon Footprint of Sugar Produced from Irrigated Sugarcane in Northeastern Nigeria," Sustainability, MDPI, vol. 12(24), pages 1-24, December.
    16. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    17. Turner, Graham M. & West, James, 2012. "Environmental implications of electricity generation in an integrated long-term planning framework," Energy Policy, Elsevier, vol. 41(C), pages 316-332.
    18. Stoll, Pia & Brandt, Nils & Nordström, Lars, 2014. "Including dynamic CO2 intensity with demand response," Energy Policy, Elsevier, vol. 65(C), pages 490-500.
    19. Horner, Robert M. & Clark, Corrie E., 2013. "Characterizing variability and reducing uncertainty in estimates of solar land use energy intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 129-137.
    20. Amor, Mourad Ben & Pineau, Pierre-Olivier & Gaudreault, Caroline & Samson, Réjean, 2012. "Assessing the economic value of renewable distributed generation in the Northeastern American market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5687-5695.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decisn:v:47:y:2020:i:3:d:10.1007_s40622-020-00251-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.