IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v43y2020i2d10.1007_s10203-020-00297-5.html
   My bibliography  Save this article

Integrating fuzzy goal programming and data envelopment analysis to incorporate preferred decision-maker targets in efficiency measurement

Author

Listed:
  • Debora Di Caprio

    (University of Trento
    York University)

  • Ali Ebrahimnejad

    (Islamic Azad University)

  • Mojtaba Ghiyasi

    (Shahrood University of Technology)

  • Francisco J. Santos-Arteaga

    (Free University of Bolzano)

Abstract

Data envelopment analysis (DEA) is a nonparametric frontier assessment method used to evaluate the relative efficiency of similar decision-making units (DMUs). This method provides benchmarking information regarding the removal of inefficiency. In conventional DEA models, the view of the decision maker (DM) is ignored and the performance of each DMU is solely determined by the observations retrieved. The current paper exploits the structural similarity existing between DEA and multiple objective programming to define a model that incorporates the preferences of DMs in the evaluation process of DMUs. Given the potential unfeasibility of the input and output targets selected by the DM, the model defines an interactive procedure that considers minimum and maximum acceptable objective levels. Given the feasible levels located closer to the targets selected by the DM, a program improving upon the feasible allocations is designed so that the suggested benchmark approximates the requirements fixed by the DM as much as possible. A real-life case study is included to illustrate the efficacy and applicability of the proposed hybrid procedure.

Suggested Citation

  • Debora Di Caprio & Ali Ebrahimnejad & Mojtaba Ghiyasi & Francisco J. Santos-Arteaga, 2020. "Integrating fuzzy goal programming and data envelopment analysis to incorporate preferred decision-maker targets in efficiency measurement," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 673-690, December.
  • Handle: RePEc:spr:decfin:v:43:y:2020:i:2:d:10.1007_s10203-020-00297-5
    DOI: 10.1007/s10203-020-00297-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10203-020-00297-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10203-020-00297-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1990. "Polyhedral Cone-Ratio DEA Models with an illustrative application to large commercial banks," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 73-91.
    2. Thanassoulis, E. & Dyson, R. G., 1992. "Estimating preferred target input-output levels using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 56(1), pages 80-97, January.
    3. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    4. Taylor, William M. & Thompson, Russell G. & Thrall, Robert M. & Dharmapala, P. S., 1997. "DEA/AR efficiency and profitability of Mexican banks a total income model," European Journal of Operational Research, Elsevier, vol. 98(2), pages 346-363, April.
    5. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    6. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    7. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Brunelli & Michele Fedrizzi & Salvatore Greco & José Rui Figueira & Roman Słowiński, 2020. "A special issue on multi-criteria decision aiding," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 557-558, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    2. Yang, J.B. & Wong, B.Y.H. & Xu, D.L. & Liu, X.B. & Steuer, R.E., 2010. "Integrated bank performance assessment and management planning using hybrid minimax reference point - DEA approach," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1506-1518, December.
    3. Yang, Jian-Bo & Wong, Brandon Y.H. & Xu, Dong-Ling & Stewart, Theodor J., 2009. "Integrating DEA-oriented performance assessment and target setting using interactive MOLP methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 205-222, May.
    4. Yun, Y. B. & Nakayama, H. & Tanino, T., 2004. "A generalized model for data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 157(1), pages 87-105, August.
    5. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    6. Thanassoulis, E. & Boussofiane, A. & Dyson, R. G., 1995. "Exploring output quality targets in the provision of perinatal care in England using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 80(3), pages 588-607, February.
    7. Asmild, Mette & Paradi, Joseph C. & Reese, David N. & Tam, Fai, 2007. "Measuring overall efficiency and effectiveness using DEA," European Journal of Operational Research, Elsevier, vol. 178(1), pages 305-321, April.
    8. Baris Yilmaz & Mehmet Yurdusev & Nilgun Harmancioglu, 2009. "The Assessment of Irrigation Efficiency in Buyuk Menderes Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1081-1095, April.
    9. Finn Førsund, 2013. "Weight restrictions in DEA: misplaced emphasis?," Journal of Productivity Analysis, Springer, vol. 40(3), pages 271-283, December.
    10. Zhimin Huang & Waiman Cheung & Huiwen Wang, 2006. "Cone dominance and efficiency in DEA," Annals of Operations Research, Springer, vol. 145(1), pages 89-103, July.
    11. Kaoru Tone, 2001. "On Returns to Scale under Weight Restrictions in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 16(1), pages 31-47, July.
    12. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    13. Olesen, O. B. & Petersen, N. C., 1995. "Incorporating quality into data envelopment analysis: a stochastic dominance approach," International Journal of Production Economics, Elsevier, vol. 39(1-2), pages 117-135, April.
    14. Ole Olesen & Niels Petersen, 1999. "Probabilistic Bounds on the Virtual Multipliers in Data Envelopment Analysis: Polyhedral Cone Constraints," Journal of Productivity Analysis, Springer, vol. 12(2), pages 103-133, September.
    15. Jie Wu & Zhixiang Zhou, 2015. "A mixed-objective integer DEA model," Annals of Operations Research, Springer, vol. 228(1), pages 81-95, May.
    16. Jamal Ouenniche & Skarleth Carrales, 2018. "Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback," Annals of Operations Research, Springer, vol. 266(1), pages 551-587, July.
    17. Perrigot, Rozenn & Barros, Carlos Pestana, 2008. "Technical efficiency of French retailers," Journal of Retailing and Consumer Services, Elsevier, vol. 15(4), pages 296-305.
    18. Barros, Carlos Pestana & Peypoch, Nicolas, 2008. "Technical efficiency of thermoelectric power plants," Energy Economics, Elsevier, vol. 30(6), pages 3118-3127, November.
    19. Kuosmanen, Timo & Post, Thierry, 2001. "Measuring economic efficiency with incomplete price information: With an application to European commercial banks," European Journal of Operational Research, Elsevier, vol. 134(1), pages 43-58, October.
    20. Thompson, Russell G. & Brinkmann, Emile J. & Dharmapala, P. S. & Gonzalez-Lima, M. D. & Thrall, Robert M., 1997. "DEA/AR profit ratios and sensitivity of 100 large U.S. banks," European Journal of Operational Research, Elsevier, vol. 98(2), pages 213-229, April.

    More about this item

    Keywords

    Data envelopment analysis; Fuzzy goal programming; Multiple objective linear programming; Subjective preferences; Target setting; Efficiency;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:43:y:2020:i:2:d:10.1007_s10203-020-00297-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.