IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v90y2025i2d10.1007_s10589-024-00641-0.html
   My bibliography  Save this article

Convergence analysis for a nonlocal gradient descent method via directional Gaussian smoothing

Author

Listed:
  • Hoang Tran

    (Oak Ridge National Laboratory)

  • Qiang Du

    (Columbia University)

  • Guannan Zhang

    (Oak Ridge National Laboratory)

Abstract

We analyze the convergence of a nonlocal gradient descent method for minimizing a class of high-dimensional non-convex functions, where a directional Gaussian smoothing (DGS) is proposed to define the nonlocal gradient (also referred to as the DGS gradient). The method was first proposed in [Zhang et al., Enabling long-range exploration in minimization of multimodal functions, UAI 2021], in which multiple numerical experiments showed that replacing the traditional local gradient with the DGS gradient can help the optimizers escape local minima more easily and significantly improve their performance. However, a rigorous theory for the efficiency of the method on nonconvex landscape is lacking. In this work, we investigate the scenario where the objective function is composed of a convex function, perturbed by deterministic oscillating noise. We provide a convergence theory under which the iterates exponentially converge to a tightened neighborhood of the solution, whose size is characterized by the noise wavelength. We also establish a correlation between the optimal values of the Gaussian smoothing radius and the noise wavelength, thus justifying the advantage of using moderate or large smoothing radii with the method. Furthermore, if the noise level decays to zero when approaching the global minimum, we prove that DGS-based optimization converges to the exact global minimum with linear rates, similarly to standard gradient-based methods in optimizing convex functions. Several numerical experiments are provided to confirm our theory and illustrate the superiority of the approach over those based on the local gradient.

Suggested Citation

  • Hoang Tran & Qiang Du & Guannan Zhang, 2025. "Convergence analysis for a nonlocal gradient descent method via directional Gaussian smoothing," Computational Optimization and Applications, Springer, vol. 90(2), pages 481-513, March.
  • Handle: RePEc:spr:coopap:v:90:y:2025:i:2:d:10.1007_s10589-024-00641-0
    DOI: 10.1007/s10589-024-00641-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00641-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00641-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:90:y:2025:i:2:d:10.1007_s10589-024-00641-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.