IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i3d10.1007_s10589-024-00576-6.html
   My bibliography  Save this article

A hybrid inexact regularized Newton and negative curvature method

Author

Listed:
  • Hong Zhu

    (Jiangsu University)

  • Yunhai Xiao

    (Henan University)

Abstract

In this paper, we propose a hybrid inexact regularized Newton and negative curvature method for solving unconstrained nonconvex problems. The descent direction is chosen based on different conditions, either the negative curvature or the inexact regularized direction. In addition, to minimize computational costs while obtaining the negative curvature, we employ a dimensionality reduction strategy to verify if the Hessian matrix exhibits negative curvatures within a three-dimensional subspace. We show that the proposed method can achieve the best-known global iteration complexity if the Hessian of the objective function is Lipschitz continuous on a certain compact set. Two simplified methods for nonconvex and strongly convex problems are analyzed as specific instances of the proposed method. We show that under the local error bound assumption with respect to the gradient, the distance between iterations generated by our proposed method and the local solution set converges to $$0$$ 0 at a superlinear rate. Additionally, for strongly convex problems, the quadratic convergence rate can be achieved. Extensive numerical experiments show the effectiveness of the proposed method.

Suggested Citation

  • Hong Zhu & Yunhai Xiao, 2024. "A hybrid inexact regularized Newton and negative curvature method," Computational Optimization and Applications, Springer, vol. 88(3), pages 849-870, July.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00576-6
    DOI: 10.1007/s10589-024-00576-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00576-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00576-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00576-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.