IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i1d10.1007_s10589-024-00557-9.html
   My bibliography  Save this article

Convex mixed-integer nonlinear programs derived from generalized disjunctive programming using cones

Author

Listed:
  • David E. Bernal Neira

    (Purdue University
    Universities Space Research Association
    NASA Ames Research Center)

  • Ignacio E. Grossmann

    (Carnegie Mellon University)

Abstract

We propose the formulation of convex Generalized Disjunctive Programming (GDP) problems using conic inequalities leading to conic GDP problems. We then show the reformulation of conic GDPs into Mixed-Integer Conic Programming (MICP) problems through both the big-M and hull reformulations. These reformulations have the advantage that they are representable using the same cones as the original conic GDP. In the case of the hull reformulation, they require no approximation of the perspective function. Moreover, the MICP problems derived can be solved by specialized conic solvers and offer a natural extended formulation amenable to both conic and gradient-based solvers. We present the closed form of several convex functions and their respective perspectives in conic sets, allowing users to formulate their conic GDP problems easily. We finally implement a large set of conic GDP examples and solve them via the scalar nonlinear and conic mixed-integer reformulations. These examples include applications from Process Systems Engineering, Machine learning, and randomly generated instances. Our results show that the conic structure can be exploited to solve these challenging MICP problems more efficiently. Our main contribution is providing the reformulations, examples, and computational results that support the claim that taking advantage of conic formulations of convex GDP instead of their nonlinear algebraic descriptions can lead to a more efficient solution to these problems.

Suggested Citation

  • David E. Bernal Neira & Ignacio E. Grossmann, 2024. "Convex mixed-integer nonlinear programs derived from generalized disjunctive programming using cones," Computational Optimization and Applications, Springer, vol. 88(1), pages 251-312, May.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-024-00557-9
    DOI: 10.1007/s10589-024-00557-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00557-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00557-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:1:d:10.1007_s10589-024-00557-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.