IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v79y2021i1d10.1007_s10589-020-00262-3.html
   My bibliography  Save this article

Convergence of sum-up rounding schemes for cloaking problems governed by the Helmholtz equation

Author

Listed:
  • Sven Leyffer

    (Argonne National Laboratory)

  • Paul Manns

    (Argonne National Laboratory)

  • Malte Winckler

    (Universität Duisburg-Essen)

Abstract

We consider the problem of designing a cloak for waves described by the Helmholtz equation from an integer programming point of view. The problem can be modeled as a PDE-constrained optimization problem with integer-valued control inputs that are distributed in the computational domain. A first-discretize-then-optimize approach results in a large-scale mixed-integer nonlinear program that is in general intractable because of the large number of integer variables that arise from the discretization of the domain. Instead, we propose an efficient algorithm that is able to approximate the local infima of the underlying nonconvex infinite-dimensional problem arbitrarily close without the need to solve the discretized finite-dimensional integer programs to optimality. We optimize only the continuous relaxations of the approximations for local minima and then apply the sum-up rounding methodology to obtain integer-valued controls. If the solutions of the discretized continuous relaxations converge to a local minimizer of the continuous relaxation, then the resulting discrete-valued control sequence converges weakly $$^*$$ ∗ in $$L^\infty$$ L ∞ to the same local minimizer. These approximation properties follow under suitable refinements of the involved discretization grids. Our results use familiar concepts arising from the analytical properties of the underlying PDE and complement previous results, derived from a topology optimization point of view.

Suggested Citation

  • Sven Leyffer & Paul Manns & Malte Winckler, 2021. "Convergence of sum-up rounding schemes for cloaking problems governed by the Helmholtz equation," Computational Optimization and Applications, Springer, vol. 79(1), pages 193-221, May.
  • Handle: RePEc:spr:coopap:v:79:y:2021:i:1:d:10.1007_s10589-020-00262-3
    DOI: 10.1007/s10589-020-00262-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00262-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00262-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Sager & Michael Jung & Christian Kirches, 2011. "Combinatorial integral approximation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 363-380, June.
    2. Falk Hante & Sebastian Sager, 2013. "Relaxation methods for mixed-integer optimal control of partial differential equations," Computational Optimization and Applications, Springer, vol. 55(1), pages 197-225, May.
    3. Olaf Benedix & Boris Vexler, 2009. "A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints," Computational Optimization and Applications, Springer, vol. 44(1), pages 3-25, October.
    4. Irwin Yousept, 2012. "Finite Element Analysis of an Optimal Control Problem in the Coefficients of Time-Harmonic Eddy Current Equations," Journal of Optimization Theory and Applications, Springer, vol. 154(3), pages 879-903, September.
    5. Пигнастый, Олег & Koжевников, Георгий, 2019. "Распределенная Динамическая Pde-Модель Программного Управления Загрузкой Технологического Оборудования Производственной Линии [Distributed dynamic PDE-model of a program control by utilization of t," MPRA Paper 93278, University Library of Munich, Germany, revised 02 Feb 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominik Garmatter & Margherita Porcelli & Francesco Rinaldi & Martin Stoll, 2023. "An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations," Computational Optimization and Applications, Springer, vol. 84(1), pages 191-223, January.
    2. Marvin Severitt & Paul Manns, 2023. "Efficient Solution of Discrete Subproblems Arising in Integer Optimal Control with Total Variation Regularization," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 869-885, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marvin Severitt & Paul Manns, 2023. "Efficient Solution of Discrete Subproblems Arising in Integer Optimal Control with Total Variation Regularization," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 869-885, July.
    2. S. Göttlich & A. Potschka & C. Teuber, 2019. "A partial outer convexification approach to control transmission lines," Computational Optimization and Applications, Springer, vol. 72(2), pages 431-456, March.
    3. Sebastian Sager & Clemens Zeile, 2021. "On mixed-integer optimal control with constrained total variation of the integer control," Computational Optimization and Applications, Springer, vol. 78(2), pages 575-623, March.
    4. Christoph Buchheim & Renke Kuhlmann & Christian Meyer, 2018. "Combinatorial optimal control of semilinear elliptic PDEs," Computational Optimization and Applications, Springer, vol. 70(3), pages 641-675, July.
    5. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    6. S. Frei & H. Andrä & R. Pinnau & O. Tse, 2015. "Optimizing fiber orientation in fiber-reinforced materials using efficient upscaling," Computational Optimization and Applications, Springer, vol. 62(1), pages 111-129, September.
    7. Jose Cruz & Daniel Sevcovic, 2020. "On solutions of a partial integro-differential equation in Bessel potential spaces with applications in option pricing models," Papers 2003.03851, arXiv.org.
    8. Ana Werlang & Gabriel Cunha & João Bastos & Juliana Serra & Bruno Barbosa & Luiz Barroso, 2021. "Reliability Metrics for Generation Planning and the Role of Regulation in the Energy Transition: Case Studies of Brazil and Mexico," Energies, MDPI, vol. 14(21), pages 1-27, November.
    9. Elena-Corina Cipu, 2019. "Duality Results in Quasiinvex Variational Control Problems with Curvilinear Integral Functionals," Mathematics, MDPI, vol. 7(9), pages 1-9, September.
    10. Hanno Gottschalk & Marco Reese, 2021. "An Analytical Study in Multi-physics and Multi-criteria Shape Optimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 486-512, May.
    11. Karel Van Bockstal, 2020. "Existence of a Unique Weak Solution to a Nonlinear Non-Autonomous Time-Fractional Wave Equation (of Distributed-Order)," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    12. Assed Haddad & Ahmed Hammad & Danielle Castro & Diego Vasco & Carlos Alberto Pereira Soares, 2021. "Framework for Assessing Urban Energy Sustainability," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    13. Martin Siebenborn, 2018. "A Shape Optimization Algorithm for Interface Identification Allowing Topological Changes," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 306-328, May.
    14. Savin Treanţă, 2019. "On Locally and Globally Optimal Solutions in Scalar Variational Control Problems," Mathematics, MDPI, vol. 7(9), pages 1-8, September.
    15. A. Rösch & K. G. Siebert & S. Steinig, 2017. "Reliable a posteriori error estimation for state-constrained optimal control," Computational Optimization and Applications, Springer, vol. 68(1), pages 121-162, September.
    16. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    17. Julien Hok & Sergei Kucherenko, 2021. "Pricing and Risk Analysis in Hyperbolic Local Volatility Model with Quasi Monte Carlo," Papers 2106.08421, arXiv.org.
    18. Ivan Francisco Yupanqui Tello & Alain Vande Wouwer & Daniel Coutinho, 2021. "A Concise Review of State Estimation Techniques for Partial Differential Equation Systems," Mathematics, MDPI, vol. 9(24), pages 1-15, December.
    19. Christian Klein & Julien Riton & Nikola Stoilov, 2021. "Multi-domain spectral approach for the Hilbert transform on the real line," Partial Differential Equations and Applications, Springer, vol. 2(3), pages 1-19, June.
    20. Marco Cirant & Roberto Gianni & Paola Mannucci, 2020. "Short-Time Existence for a General Backward–Forward Parabolic System Arising from Mean-Field Games," Dynamic Games and Applications, Springer, vol. 10(1), pages 100-119, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:79:y:2021:i:1:d:10.1007_s10589-020-00262-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.