IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v76y2020i1d10.1007_s10589-020-00171-5.html
   My bibliography  Save this article

Error estimates for the finite element approximation of bilinear boundary control problems

Author

Listed:
  • Max Winkler

    (Technische Universität Chemnitz)

Abstract

In this article a special class of nonlinear optimal control problems involving a bilinear term in the boundary condition is studied. These kind of problems arise for instance in the identification of an unknown space-dependent Robin coefficient from a given measurement of the state, or when the Robin coefficient can be controlled in order to reach a desired state. Necessary and sufficient optimality conditions are derived and several discretization approaches for the numerical solution of the optimal control problem are investigated. Considered are both a full discretization and the postprocessing approach meaning that we compute an improved control by a pointwise evaluation of the first-order optimality condition. For both approaches finite element error estimates are shown and the validity of these results is confirmed by numerical experiments.

Suggested Citation

  • Max Winkler, 2020. "Error estimates for the finite element approximation of bilinear boundary control problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 155-199, May.
  • Handle: RePEc:spr:coopap:v:76:y:2020:i:1:d:10.1007_s10589-020-00171-5
    DOI: 10.1007/s10589-020-00171-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00171-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00171-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egger, H. & Fellner, K. & Pietschmann, J.-F. & Tang, B.Q., 2018. "Analysis and numerical solution of coupled volume-surface reaction-diffusion systems with application to cell biology," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 351-367.
    2. K. Krumbiegel & J. Pfefferer, 2015. "Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations," Computational Optimization and Applications, Springer, vol. 61(2), pages 373-408, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Lukyanenko & Tatyana Yeleskina & Igor Prigorniy & Temur Isaev & Andrey Borzunov & Maxim Shishlenin, 2021. "Inverse Problem of Recovering the Initial Condition for a Nonlinear Equation of the Reaction–Diffusion–Advection Type by Data Given on the Position of a Reaction Front with a Time Delay," Mathematics, MDPI, vol. 9(4), pages 1-12, February.
    2. Raul Argun & Alexandr Gorbachev & Dmitry Lukyanenko & Maxim Shishlenin, 2021. "On Some Features of the Numerical Solving of Coefficient Inverse Problems for an Equation of the Reaction-Diffusion-Advection-Type with Data on the Position of a Reaction Front," Mathematics, MDPI, vol. 9(22), pages 1-18, November.
    3. Raul Argun & Alexandr Gorbachev & Natalia Levashova & Dmitry Lukyanenko, 2021. "Inverse Problem for an Equation of the Reaction-Diffusion-Advection Type with Data on the Position of a Reaction Front: Features of the Solution in the Case of a Nonlinear Integral Equation in a Reduc," Mathematics, MDPI, vol. 9(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:1:d:10.1007_s10589-020-00171-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.