IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v76y2020i1d10.1007_s10589-020-00166-2.html
   My bibliography  Save this article

A dual spectral projected gradient method for log-determinant semidefinite problems

Author

Listed:
  • Takashi Nakagaki

    (Tokyo Institute of Technology)

  • Mituhiro Fukuda

    (Tokyo Institute of Technology)

  • Sunyoung Kim

    (Ewha W. University)

  • Makoto Yamashita

    (Tokyo Institute of Technology)

Abstract

We extend the result on the spectral projected gradient method by Birgin et al. in 2000 to a log-determinant semidefinite problem with linear constraints and propose a spectral projected gradient method for the dual problem. Our method is based on alternate projections on the intersection of two convex sets, which first projects onto the box constraints and then onto a set defined by a linear matrix inequality. By exploiting structures of the two projections, we show that the same convergence properties can be obtained for the proposed method as Birgin’s method where the exact orthogonal projection onto the intersection of two convex sets is performed. Using the convergence properties, we prove that the proposed algorithm attains the optimal value or terminates in a finite number of iterations. The efficiency of the proposed method is illustrated with the numerical results on randomly generated synthetic/deterministic data and gene expression data, in comparison with other methods including the inexact primal–dual path-following interior-point method, the Newton-CG primal proximal-point algorithm, the adaptive spectral projected gradient method, and the adaptive Nesterov’s smooth method. For the gene expression data, our results are compared with the quadratic approximation for sparse inverse covariance estimation method. We show that our method outperforms the other methods in obtaining a better objective value fast.

Suggested Citation

  • Takashi Nakagaki & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2020. "A dual spectral projected gradient method for log-determinant semidefinite problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 33-68, May.
  • Handle: RePEc:spr:coopap:v:76:y:2020:i:1:d:10.1007_s10589-020-00166-2
    DOI: 10.1007/s10589-020-00166-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00166-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00166-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
    2. Chengjing Wang, 2016. "On how to solve large-scale log-determinant optimization problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 489-511, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    2. Aifen Feng & Jingya Fan & Zhengfen Jin & Mengmeng Zhao & Xiaogai Chang, 2023. "Research Based on High-Dimensional Fused Lasso Partially Linear Model," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    3. Yanyun Ding & Peili Li & Yunhai Xiao & Haibin Zhang, 2023. "Efficient dual ADMMs for sparse compressive sensing MRI reconstruction," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(2), pages 207-231, April.
    4. Li, Xin & Wu, Dongya & Li, Chong & Wang, Jinhua & Yao, Jen-Chih, 2020. "Sparse recovery via nonconvex regularized M-estimators over ℓq-balls," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    5. Chengjing Wang & Peipei Tang, 2017. "A primal majorized semismooth Newton-CG augmented Lagrangian method for large-scale linearly constrained convex programming," Computational Optimization and Applications, Springer, vol. 68(3), pages 503-532, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:1:d:10.1007_s10589-020-00166-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.