A dual spectral projected gradient method for log-determinant semidefinite problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-020-00166-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
- Chengjing Wang, 2016. "On how to solve large-scale log-determinant optimization problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 489-511, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
- Aifen Feng & Jingya Fan & Zhengfen Jin & Mengmeng Zhao & Xiaogai Chang, 2023. "Research Based on High-Dimensional Fused Lasso Partially Linear Model," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
- Yanyun Ding & Peili Li & Yunhai Xiao & Haibin Zhang, 2023. "Efficient dual ADMMs for sparse compressive sensing MRI reconstruction," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(2), pages 207-231, April.
- Li, Xin & Wu, Dongya & Li, Chong & Wang, Jinhua & Yao, Jen-Chih, 2020. "Sparse recovery via nonconvex regularized M-estimators over ℓq-balls," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Chengjing Wang & Peipei Tang, 2017. "A primal majorized semismooth Newton-CG augmented Lagrangian method for large-scale linearly constrained convex programming," Computational Optimization and Applications, Springer, vol. 68(3), pages 503-532, December.
More about this item
Keywords
Dual spectral projected gradient methods; Log-determinant semidefinite programs with linear constraints; Dual problem; Theoretical convergence results; Computational efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:1:d:10.1007_s10589-020-00166-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.