IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v75y2020i2d10.1007_s10589-019-00164-z.html
   My bibliography  Save this article

Secant update version of quasi-Newton PSB with weighted multisecant equations

Author

Listed:
  • Nicolas Boutet

    (Ghent University
    Royal Military Academy)

  • Rob Haelterman

    (Royal Military Academy)

  • Joris Degroote

    (Ghent University)

Abstract

Quasi-Newton methods are often used in the frame of non-linear optimization. In those methods, the quality and cost of the estimate of the Hessian matrix has a major influence on the efficiency of the optimization algorithm, which has a huge impact for computationally costly problems. One strategy to create a more accurate estimate of the Hessian consists in maximizing the use of available information during this computation. This is done by combining different characteristics. The Powell-Symmetric-Broyden method (PSB) imposes, for example, the satisfaction of the last secant equation, which is called secant update property, and the symmetry of the Hessian (Powell in Nonlinear Programming 31–65, 1970). Imposing the satisfaction of more secant equations should be the next step to include more information into the Hessian. However, Schnabel proved that this is impossible (Schnabel in quasi-Newton methods using multiple secant equations, 1983). Penalized PSB (pPSB), works around the impossibility by giving a symmetric Hessian and penalizing the non-satisfaction of the multiple secant equations by using weight factors (Gratton et al. in Optim Methods Softw 30(4):748–755, 2015). Doing so, he loses the secant update property. In this paper, we combine the properties of PSB and pPSB by adding to pPSB the secant update property. This gives us the secant update penalized PSB (SUpPSB). This new formula that we propose also avoids matrix inversions, which makes it easier to compute. Next to that, SUpPSB also performs globally better compared to pPSB.

Suggested Citation

  • Nicolas Boutet & Rob Haelterman & Joris Degroote, 2020. "Secant update version of quasi-Newton PSB with weighted multisecant equations," Computational Optimization and Applications, Springer, vol. 75(2), pages 441-466, March.
  • Handle: RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00164-z
    DOI: 10.1007/s10589-019-00164-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00164-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00164-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Boutet & Rob Haelterman & Joris Degroote, 2021. "Secant Update generalized version of PSB: a new approach," Computational Optimization and Applications, Springer, vol. 78(3), pages 953-982, April.
    2. E. G. Birgin & J. M. Martínez, 2022. "Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients," Computational Optimization and Applications, Springer, vol. 81(3), pages 689-715, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:75:y:2020:i:2:d:10.1007_s10589-019-00164-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.