IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v69y2018i1d10.1007_s10589-017-9940-7.html
   My bibliography  Save this article

On exact linesearch quasi-Newton methods for minimizing a quadratic function

Author

Listed:
  • Anders Forsgren

    (KTH Royal Institute of Technology)

  • Tove Odland

    (KTH Royal Institute of Technology)

Abstract

This paper concerns exact linesearch quasi-Newton methods for minimizing a quadratic function whose Hessian is positive definite. We show that by interpreting the method of conjugate gradients as a particular exact linesearch quasi-Newton method, necessary and sufficient conditions can be given for an exact linesearch quasi-Newton method to generate a search direction which is parallel to that of the method of conjugate gradients. We also analyze update matrices and give a complete description of the rank-one update matrices that give search direction parallel to those of the method of conjugate gradients. In particular, we characterize the family of such symmetric rank-one update matrices that preserve positive definiteness of the quasi-Newton matrix. This is in contrast to the classical symmetric-rank-one update where there is no freedom in choosing the matrix, and positive definiteness cannot be preserved. The analysis is extended to search directions that are parallel to those of the preconditioned method of conjugate gradients in a straightforward manner.

Suggested Citation

  • Anders Forsgren & Tove Odland, 2018. "On exact linesearch quasi-Newton methods for minimizing a quadratic function," Computational Optimization and Applications, Springer, vol. 69(1), pages 225-241, January.
  • Handle: RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9940-7
    DOI: 10.1007/s10589-017-9940-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9940-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9940-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anders Forsgren & Tove Odland, 2015. "On the connection between the conjugate gradient method and quasi-Newton methods on quadratic problems," Computational Optimization and Applications, Springer, vol. 60(2), pages 377-392, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Ek & Anders Forsgren, 2021. "Exact linesearch limited-memory quasi-Newton methods for minimizing a quadratic function," Computational Optimization and Applications, Springer, vol. 79(3), pages 789-816, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9940-7. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.