IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v68y2017i3d10.1007_s10589-017-9922-9.html
   My bibliography  Save this article

MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys

Author

Listed:
  • Peter A. Graf

    (National Renewable Energy Laboratory)

  • Stephen Billups

    (University of Colorado Denver)

Abstract

Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles instead of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Finally, we offer an explanation of the efficacy of DIRECT—specifically, its balance of global and local search—by showing that “potentially optimal rectangles” of the original algorithm are akin to the Pareto front of the “multi-component optimization” of global and local search.

Suggested Citation

  • Peter A. Graf & Stephen Billups, 2017. "MDTri: robust and efficient global mixed integer search of spaces of multiple ternary alloys," Computational Optimization and Applications, Springer, vol. 68(3), pages 671-687, December.
  • Handle: RePEc:spr:coopap:v:68:y:2017:i:3:d:10.1007_s10589-017-9922-9
    DOI: 10.1007/s10589-017-9922-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9922-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9922-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alberto Franceschetti & Alex Zunger, 1999. "The inverse band-structure problem of finding an atomic configuration with given electronic properties," Nature, Nature, vol. 402(6757), pages 60-63, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
    2. Jeffrey Larson & Sven Leyffer & Prashant Palkar & Stefan M. Wild, 2021. "A method for convex black-box integer global optimization," Journal of Global Optimization, Springer, vol. 80(2), pages 439-477, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:68:y:2017:i:3:d:10.1007_s10589-017-9922-9. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.