IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v67y2017i3d10.1007_s10589-017-9902-0.html
   My bibliography  Save this article

Generalized Krasnoselskii–Mann-type iterations for nonexpansive mappings in Hilbert spaces

Author

Listed:
  • Christian Kanzow

    (University of Würzburg)

  • Yekini Shehu

    (University of Nigeria
    University of Würzburg)

Abstract

The Krasnoselskii–Mann iteration plays an important role in the approximation of fixed points of nonexpansive operators; it is known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a new inexact Krasnoselskii–Mann iteration and prove weak convergence under certain accuracy criteria on the error resulting from the inexactness. We also show strong convergence for a modified inexact Krasnoselskii–Mann iteration under suitable assumptions. The convergence results generalize existing ones from the literature. Applications are given to the Douglas–Rachford splitting method, the Fermat–Weber location problem as well as the alternating projection method by John von Neumann.

Suggested Citation

  • Christian Kanzow & Yekini Shehu, 2017. "Generalized Krasnoselskii–Mann-type iterations for nonexpansive mappings in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 67(3), pages 595-620, July.
  • Handle: RePEc:spr:coopap:v:67:y:2017:i:3:d:10.1007_s10589-017-9902-0
    DOI: 10.1007/s10589-017-9902-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9902-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9902-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    2. Ke Guo & Deren Han, 2018. "A note on the Douglas–Rachford splitting method for optimization problems involving hypoconvex functions," Journal of Global Optimization, Springer, vol. 72(3), pages 431-441, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:67:y:2017:i:3:d:10.1007_s10589-017-9902-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.