IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v66y2017i2d10.1007_s10589-016-9864-7.html
   My bibliography  Save this article

A note on the convergence of ADMM for linearly constrained convex optimization problems

Author

Listed:
  • Liang Chen

    (Hunan University)

  • Defeng Sun

    (National University of Singapore)

  • Kim-Chuan Toh

    (National University of Singapore)

Abstract

This note serves two purposes. Firstly, we construct a counterexample to show that the statement on the convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex optimization problems in a highly influential paper by Boyd et al. (Found Trends Mach Learn 3(1):1–122, 2011) can be false if no prior condition on the existence of solutions to all the subproblems involved is assumed to hold. Secondly, we present fairly mild conditions to guarantee the existence of solutions to all the subproblems of the ADMM and provide a rigorous convergence analysis on the ADMM with a computationally more attractive large step-length that can even exceed the practically much preferred golden ratio of $$(1+\sqrt{5})/2$$ ( 1 + 5 ) / 2 .

Suggested Citation

  • Liang Chen & Defeng Sun & Kim-Chuan Toh, 2017. "A note on the convergence of ADMM for linearly constrained convex optimization problems," Computational Optimization and Applications, Springer, vol. 66(2), pages 327-343, March.
  • Handle: RePEc:spr:coopap:v:66:y:2017:i:2:d:10.1007_s10589-016-9864-7
    DOI: 10.1007/s10589-016-9864-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9864-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9864-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
    2. Deren Han & Defeng Sun & Liwei Zhang, 2018. "Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 622-637, May.
    3. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    4. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:66:y:2017:i:2:d:10.1007_s10589-016-9864-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.