IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v60y2015i1p89-110.html
   My bibliography  Save this article

A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization

Author

Listed:
  • Mehiddin Al-Baali
  • Yasushi Narushima
  • Hiroshi Yabe

Abstract

Recently, conjugate gradient methods, which usually generate descent search directions, are useful for large-scale optimization. Narushima et al. (SIAM J Optim 21:212–230, 2011 ) have proposed a three-term conjugate gradient method which satisfies a sufficient descent condition. We extend this method to two parameters family of three-term conjugate gradient methods which can be used to control the magnitude of the directional derivative. We show that these methods converge globally and work well for suitable choices of the parameters. Numerical results are also presented. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Mehiddin Al-Baali & Yasushi Narushima & Hiroshi Yabe, 2015. "A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 89-110, January.
  • Handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:89-110
    DOI: 10.1007/s10589-014-9662-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9662-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-014-9662-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaori Sugiki & Yasushi Narushima & Hiroshi Yabe, 2012. "Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 733-757, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bakhtawar Baluch & Zabidin Salleh & Ahmad Alhawarat & U. A. M. Roslan, 2017. "A New Modified Three-Term Conjugate Gradient Method with Sufficient Descent Property and Its Global Convergence," Journal of Mathematics, Hindawi, vol. 2017, pages 1-12, September.
    2. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
    3. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    4. Auwal Bala Abubakar & Poom Kumam & Aliyu Muhammed Awwal & Phatiphat Thounthong, 2019. "A Modified Self-Adaptive Conjugate Gradient Method for Solving Convex Constrained Monotone Nonlinear Equations for Signal Recovery Problems," Mathematics, MDPI, vol. 7(8), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    2. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    3. Qi Tian & Xiaoliang Wang & Liping Pang & Mingkun Zhang & Fanyun Meng, 2021. "A New Hybrid Three-Term Conjugate Gradient Algorithm for Large-Scale Unconstrained Problems," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    4. Mina Torabi & Mohammad-Mehdi Hosseini, 2018. "A New Descent Algorithm Using the Three-Step Discretization Method for Solving Unconstrained Optimization Problems," Mathematics, MDPI, vol. 6(4), pages 1-18, April.
    5. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
    6. Auwal Bala Abubakar & Poom Kumam & Aliyu Muhammed Awwal & Phatiphat Thounthong, 2019. "A Modified Self-Adaptive Conjugate Gradient Method for Solving Convex Constrained Monotone Nonlinear Equations for Signal Recovery Problems," Mathematics, MDPI, vol. 7(8), pages 1-24, August.
    7. Saman Babaie-Kafaki & Reza Ghanbari, 2016. "Descent Symmetrization of the Dai–Liao Conjugate Gradient Method," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(02), pages 1-10, April.
    8. Dong, Xiao Liang & Liu, Hong Wei & He, Yu Bo, 2015. "New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 606-617.
    9. Bakhtawar Baluch & Zabidin Salleh & Ahmad Alhawarat & U. A. M. Roslan, 2017. "A New Modified Three-Term Conjugate Gradient Method with Sufficient Descent Property and Its Global Convergence," Journal of Mathematics, Hindawi, vol. 2017, pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:1:p:89-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.