IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i2p469-492.html
   My bibliography  Save this article

Parallel deterministic and stochastic global minimization of functions with very many minima

Author

Listed:
  • David Easterling
  • Layne Watson
  • Michael Madigan
  • Brent Castle
  • Michael Trosset

Abstract

The optimization of three problems with high dimensionality and many local minima are investigated under five different optimization algorithms: DIRECT, simulated annealing, Spall’s SPSA algorithm, the KNITRO package, and QNSTOP, a new algorithm developed at Indiana University. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • David Easterling & Layne Watson & Michael Madigan & Brent Castle & Michael Trosset, 2014. "Parallel deterministic and stochastic global minimization of functions with very many minima," Computational Optimization and Applications, Springer, vol. 57(2), pages 469-492, March.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:469-492
    DOI: 10.1007/s10589-013-9592-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9592-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9592-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    2. L. Ingber, 1993. "Simulated annealing: Practice versus theory," Lester Ingber Papers 93sa, Lester Ingber.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ubaldo M. García-Palomares, 2020. "Non-monotone derivative-free algorithm for solving optimization models with linear constraints: extensions for solving nonlinearly constrained models via exact penalty methods," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-625, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xianghong & Smith, Barry, 2015. "Diagnostic analysis and computational strategies for estimating discrete time duration models—A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 187(1), pages 275-292.
    2. Nilsson, Birger & Hansson, Björn, 2004. "A Two-State Capital Asset Pricing Model with Unobservable States," Working Papers 2004:28, Lund University, Department of Economics.
    3. Thomas Baudin & Robert Stelter, 2022. "The rural exodus and the rise of Europe," Journal of Economic Growth, Springer, vol. 27(3), pages 365-414, September.
    4. Luca Benati & Paolo Surico, 2009. "VAR Analysis and the Great Moderation," American Economic Review, American Economic Association, vol. 99(4), pages 1636-1652, September.
    5. Asgharian, Hossein & Hess, Wolfgang & Liu, Lu, 2013. "A spatial analysis of international stock market linkages," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4738-4754.
    6. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    7. John M. Abowd & Francis Kramarz & Sébastien Pérez-Duarte & Ian M. Schmutte, 2018. "Sorting Between and Within Industries: A Testable Model of Assortative Matching," Annals of Economics and Statistics, GENES, issue 129, pages 1-32.
    8. Jason Matthew DeBacker, 2015. "Flip‐Flopping: Ideological Adjustment Costs In The United States Senate," Economic Inquiry, Western Economic Association International, vol. 53(1), pages 108-128, January.
    9. Luca Benati & Pierpaolo Benigno, 2023. "Gibson s Paradox and the Natural Rate of Interest," Diskussionsschriften dp2303, Universitaet Bern, Departement Volkswirtschaft.
    10. Haan, Peter & Prowse, Victoria L., 2010. "The Design of Unemployment Transfers: Evidence from a Dynamic Structural Life-Cycle Model," IZA Discussion Papers 4792, Institute of Labor Economics (IZA).
    11. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    12. Green, Rikard & Larsson, Karl & Lunina, Veronika & Nilsson, Birger, 2018. "Cross-commodity news transmission and volatility spillovers in the German energy markets," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 231-243.
    13. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    14. Roman Sustek, 2011. "Monetary Business Cycle Accounting," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(4), pages 592-612, October.
    15. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    16. Martin Andreasen, 2010. "How to Maximize the Likelihood Function for a DSGE Model," Computational Economics, Springer;Society for Computational Economics, vol. 35(2), pages 127-154, February.
    17. Max Jerrell, 2000. "Applications Of Public Global Optimization Software To Difficult Econometric Functions," Computing in Economics and Finance 2000 161, Society for Computational Economics.
    18. Robert G. King & Alexander Wolman & Michael Dotsey, 2009. "Inflation and Real Activity with Firm Level Productivity Shocks," 2009 Meeting Papers 367, Society for Economic Dynamics.
    19. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    20. Deb, Partha & Trivedi, Pravin K., 2002. "The structure of demand for health care: latent class versus two-part models," Journal of Health Economics, Elsevier, vol. 21(4), pages 601-625, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:469-492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.