IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i1p241-270.html
   My bibliography  Save this article

A minimum effort optimal control problem for the wave equation

Author

Listed:
  • Axel Kröner
  • Karl Kunisch

Abstract

A minimum effort optimal control problem for the undamped wave equation is considered which involves L ∞ -control costs. Since the problem is non-differentiable a regularized problem is introduced. Uniqueness of the solution of the regularized problem is proven and the convergence of the regularized solutions is analyzed. Further, a semi-smooth Newton method is formulated to solve the regularized problems and its superlinear convergence is shown. Thereby special attention has to be paid to the well-posedness of the Newton iteration. Numerical examples confirm the theoretical results. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Axel Kröner & Karl Kunisch, 2014. "A minimum effort optimal control problem for the wave equation," Computational Optimization and Applications, Springer, vol. 57(1), pages 241-270, January.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:1:p:241-270
    DOI: 10.1007/s10589-013-9587-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9587-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9587-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerdts, Matthias & Greif, Günter & Pesch, Hans Josef, 2008. "Numerical optimal control of the wave equation: optimal boundary control of a string to rest in finite time," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 1020-1032.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablos, Blanca & Gerdts, Matthias, 2021. "Substructure exploitation of a nonsmooth Newton method for large-scale optimal control problems with full discretization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 641-658.
    2. Gerasimos G. Rigatos, 2016. "Boundary Control Of The Black–Scholes Pde For Option Dynamics Stabilization," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-29, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:1:p:241-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.