IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v54y2013i3p555-578.html
   My bibliography  Save this article

Improved constraint consensus methods for seeking feasibility in nonlinear programs

Author

Listed:
  • Laurence Smith
  • John Chinneck
  • Victor Aitken

Abstract

The Constraint Consensus method moves quickly from an initial infeasible point to a point that is close to feasibility for a set of nonlinear constraints. It is a useful first step prior to launching an expensive local solver, improving the probability that the local solver will find a solution and the speed with which it is found. The two main ingredients are the method for calculating the feasibility vector for each violated constraint (the estimated vector to the closest point that satisfies the constraint), and the method of combining the feasibility vectors into a single consensus vector that updates the current point. We propose several improvements: (i) a simple new method for calculating the consensus vector, (ii) a predictor-corrector approach to adjusting the consensus vector, (iii) an improved way of selecting the output point, and (iv) ways of selecting subsets of the constraints to operate on at a given iteration. These techniques greatly improve the performance of barrier method local solvers. Quadratic feasibility vectors are also investigated. Empirical results are given for a large set of nonlinear and nonconvex models. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Laurence Smith & John Chinneck & Victor Aitken, 2013. "Improved constraint consensus methods for seeking feasibility in nonlinear programs," Computational Optimization and Applications, Springer, vol. 54(3), pages 555-578, April.
  • Handle: RePEc:spr:coopap:v:54:y:2013:i:3:p:555-578
    DOI: 10.1007/s10589-012-9473-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9473-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9473-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John W. Chinneck, 2004. "The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 16(3), pages 255-265, August.
    2. John W. Chinneck, 2008. "Feasibility and Infeasibility in Optimization," International Series in Operations Research and Management Science, Springer, number 978-0-387-74932-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yang & Ahn, Soyoung & Wang, Meng & Hoogendoorn, Serge, 2020. "Stabilizing mixed vehicular platoons with connected automated vehicles: An H-infinity approach," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 152-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jérémy Omer & Michael Poss, 2021. "Identifying relatively irreducible infeasible subsystems of linear inequalities," Annals of Operations Research, Springer, vol. 304(1), pages 361-379, September.
    2. Oliver Bastert & Benjamin Hummel & Sven de Vries, 2010. "A Generalized Wedelin Heuristic for Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 93-107, February.
    3. Briec, Walter & Kerstens, Kristiaan & Prior, Diego & Van de Woestyne, Ignace, 2010. "Tangency capacity notions based upon the profit and cost functions: A non-parametric approach and a general comparison," Economic Modelling, Elsevier, vol. 27(5), pages 1156-1166, September.
    4. Barbaros Yet & Ceren Tuncer Şakar, 2020. "Estimating criteria weight distributions in multiple criteria decision making: a Bayesian approach," Annals of Operations Research, Springer, vol. 293(2), pages 495-519, October.
    5. Shafiu Jibrin & James W. Swift, 2015. "Constraint Consensus Methods for Finding Strictly Feasible Points of Linear Matrix Inequalities," Journal of Optimization, Hindawi, vol. 2015, pages 1-16, January.
    6. Gülşah Karakaya & Murat Köksalan, 2016. "An interactive approach for Bi-attribute multi-item auctions," Annals of Operations Research, Springer, vol. 245(1), pages 97-119, October.
    7. Yash Puranik & Nikolaos V. Sahinidis, 2017. "Deletion Presolve for Accelerating Infeasibility Diagnosis in Optimization Models," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 754-766, November.
    8. Aviv Gibali & Karl-Heinz Küfer & Daniel Reem & Philipp Süss, 2018. "A generalized projection-based scheme for solving convex constrained optimization problems," Computational Optimization and Applications, Springer, vol. 70(3), pages 737-762, July.
    9. Kai Kellner & Marc E. Pfetsch & Thorsten Theobald, 2019. "Irreducible Infeasible Subsystems of Semidefinite Systems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 727-742, June.
    10. Obuchowska, Wiesława T., 2012. "Feasibility in reverse convex mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 218(1), pages 58-67.
    11. Wenma Jin & Yair Censor & Ming Jiang, 2016. "Bounded perturbation resilience of projected scaled gradient methods," Computational Optimization and Applications, Springer, vol. 63(2), pages 365-392, March.
    12. Karakaya, G. & Köksalan, M., 2023. "Finding preferred solutions under weighted Tchebycheff preference functions for multi-objective integer programs," European Journal of Operational Research, Elsevier, vol. 308(1), pages 215-228.
    13. Erick Moreno-Centeno & Richard M. Karp, 2013. "The Implicit Hitting Set Approach to Solve Combinatorial Optimization Problems with an Application to Multigenome Alignment," Operations Research, INFORMS, vol. 61(2), pages 453-468, April.
    14. Kadziński, Miłosz & Labijak, Anna & Napieraj, Małgorzata, 2017. "Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports," Omega, Elsevier, vol. 67(C), pages 1-18.
    15. Canan Ulu & Murat Köksalan, 2014. "An interactive approach to multicriteria sorting for quasiconcave value functions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 447-457, September.
    16. Richard J. Caron & Tim Traynor & Shafiu Jibrin, 2010. "Feasibility and Constraint Analysis of Sets of Linear Matrix Inequalities," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 144-153, February.
    17. Wiesława T. Obuchowska, 2015. "Irreducible Infeasible Sets in Convex Mixed-Integer Programs," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 747-766, September.
    18. Nikolaos P. Theodorakatos & Miltiadis Lytras & Rohit Babu, 2020. "Towards Smart Energy Grids: A Box-Constrained Nonlinear Underdetermined Model for Power System Observability Using Recursive Quadratic Programming," Energies, MDPI, vol. 13(7), pages 1-17, April.
    19. Wiesława Obuchowska, 2010. "Minimal infeasible constraint sets in convex integer programs," Journal of Global Optimization, Springer, vol. 46(3), pages 423-433, March.
    20. Noha Hamza & Ruhul Sarker & Daryl Essam, 2013. "Differential evolution with multi-constraint consensus methods for constrained optimization," Journal of Global Optimization, Springer, vol. 57(2), pages 583-611, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:3:p:555-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.