IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i2p375-393.html
   My bibliography  Save this article

Convergence of distributed optimal control problems governed by elliptic variational inequalities

Author

Listed:
  • Mahdi Boukrouche
  • Domingo Tarzia

Abstract

First, let u g be the unique solution of an elliptic variational inequality with source term g. We establish, in the general case, the error estimate between $u_{3}(\mu)=\mu u_{g_{1}}+ (1-\mu)u_{g_{2}}$ and $u_{4}(\mu)=u_{\mu g_{1}+ (1-\mu) g_{2}}$ for μ∈[0,1]. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy g for each positive heat transfer coefficient h given on a part of the boundary of the domain. For a given cost functional and using some monotony property between u 3 (μ) and u 4 (μ) given in Mignot (J. Funct. Anal. 22:130–185, 1976 ), we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter h goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot’s conical differentiability) which is a great advantage with respect to the proof given in Gariboldi and Tarzia (Appl. Math. Optim. 47:213–230, 2003 ), for optimal control problems governed by elliptic variational equalities. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Mahdi Boukrouche & Domingo Tarzia, 2012. "Convergence of distributed optimal control problems governed by elliptic variational inequalities," Computational Optimization and Applications, Springer, vol. 53(2), pages 375-393, October.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:375-393
    DOI: 10.1007/s10589-011-9438-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-011-9438-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-011-9438-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Bergounioux, 1997. "Use of Augmented Lagrangian Methods for the Optimal Control of Obstacle Problems," Journal of Optimization Theory and Applications, Springer, vol. 95(1), pages 101-126, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Sen Chang & Salahuddin & Lin Wang & Jinfang Tang & Liangcai Zhao, 2022. "Optimal Control Problems for Set-Valued Quasivariational Inequalities with Applications," Mathematics, MDPI, vol. 10(5), pages 1-19, February.
    2. Jinxia Cen & Tahar Haddad & Van Thien Nguyen & Shengda Zeng, 2022. "Simultaneous distributed-boundary optimal control problems driven by nonlinear complementarity systems," Journal of Global Optimization, Springer, vol. 84(3), pages 783-805, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hintermüller & I. Kopacka, 2011. "A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs," Computational Optimization and Applications, Springer, vol. 50(1), pages 111-145, September.
    2. Victor A. Kovtunenko & Karl Kunisch, 2022. "Shape Derivative for Penalty-Constrained Nonsmooth–Nonconvex Optimization: Cohesive Crack Problem," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 597-635, August.
    3. Yarui Duan & Song Wang & Yuying Zhou, 2021. "A power penalty approach to a mixed quasilinear elliptic complementarity problem," Journal of Global Optimization, Springer, vol. 81(4), pages 901-918, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:375-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.