IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i2p347-373.html
   My bibliography  Save this article

Evaluating bound-constrained minimization software

Author

Listed:
  • Ernesto Birgin
  • Jan Gentil

Abstract

Bound-constrained minimization is a subject of active research. To assess the performance of existent solvers, numerical evaluations and comparisons are carried on. Arbitrary decisions that may have a crucial effect on the conclusions of numerical experiments are highlighted in the present work. As a result, a detailed evaluation based on performance profiles is applied to the comparison of bound-constrained minimization solvers. Extensive numerical results are presented and analyzed. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Ernesto Birgin & Jan Gentil, 2012. "Evaluating bound-constrained minimization software," Computational Optimization and Applications, Springer, vol. 53(2), pages 347-373, October.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:347-373
    DOI: 10.1007/s10589-012-9466-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9466-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9466-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth W. Karas & Sandra A. Santos & Benar F. Svaiter, 2016. "Algebraic rules for computing the regularization parameter of the Levenberg–Marquardt method," Computational Optimization and Applications, Springer, vol. 65(3), pages 723-751, December.
    2. Adriano Verdério & Elizabeth W. Karas & Lucas G. Pedroso & Katya Scheinberg, 2017. "On the construction of quadratic models for derivative-free trust-region algorithms," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 501-527, December.
    3. Elizabeth Karas & Sandra Santos & Benar Svaiter, 2015. "Algebraic rules for quadratic regularization of Newton’s method," Computational Optimization and Applications, Springer, vol. 60(2), pages 343-376, March.
    4. Andrea Cristofari & Marianna Santis & Stefano Lucidi & Francesco Rinaldi, 2017. "A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 369-401, February.
    5. E. G. Birgin & J. M. Martínez, 2019. "A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 707-753, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:347-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.