IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i1p23-44.html
   My bibliography  Save this article

Edge-based semidefinite programming relaxation of sensor network localization with lower bound constraints

Author

Listed:
  • Ting Pong

Abstract

In this paper, we strengthen the edge-based semidefinite programming relaxation (ESDP) recently proposed by Wang, Zheng, Boyd, and Ye (SIAM J. Optim. 19:655–673, 2008 ) by adding lower bound constraints. We show that, when distances are exact, zero individual trace is necessary and sufficient for a sensor to be correctly positioned by an interior solution. To extend this characterization of accurately positioned sensors to the noisy case, we propose a noise-aware version of ESDP lb (ρ-ESDP lb ) and show that, for small noise, a small individual trace is equivalent to the sensor being accurately positioned by a certain analytic center solution. We then propose a postprocessing heuristic based on ρ-ESDP lb and a distributed algorithm to solve it. Our computational results show that, when applied to a solution obtained by solving ρ-ESDP proposed of Pong and Tseng (Math. Program. doi: 10.1007/s10107-009-0338-x ), this heuristics usually improves the RMSD by at least 10%. Furthermore, it provides a certificate for identifying accurately positioned sensors in the refined solution, which is not common for existing refinement heuristics. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Ting Pong, 2012. "Edge-based semidefinite programming relaxation of sensor network localization with lower bound constraints," Computational Optimization and Applications, Springer, vol. 53(1), pages 23-44, September.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:23-44
    DOI: 10.1007/s10589-011-9447-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-011-9447-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-011-9447-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiawang Nie, 2009. "Sum of squares method for sensor network localization," Computational Optimization and Applications, Springer, vol. 43(2), pages 151-179, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Ding & Hou-Duo Qi, 2017. "Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation," Computational Optimization and Applications, Springer, vol. 66(1), pages 187-218, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng-Meng Zheng & Zheng-Hai Huang & Sheng-Long Hu, 2022. "Unconstrained minimization of block-circulant polynomials via semidefinite program in third-order tensor space," Journal of Global Optimization, Springer, vol. 84(2), pages 415-440, October.
    2. Chao Ding & Hou-Duo Qi, 2017. "Convex Euclidean distance embedding for collaborative position localization with NLOS mitigation," Computational Optimization and Applications, Springer, vol. 66(1), pages 187-218, January.
    3. Kristijan Cafuta, 2019. "Sums of Hermitian squares decomposition of non-commutative polynomials in non-symmetric variables using NCSOStools," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 397-413, June.
    4. Wu, Zhiyou & Tian, Jing & Quan, Jing & Ugon, Julien, 2014. "Optimality conditions and optimization methods for quartic polynomial optimization," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 968-982.
    5. João Gouveia & Ting Pong, 2012. "Comparing SOS and SDP relaxations of sensor network localization," Computational Optimization and Applications, Springer, vol. 52(3), pages 609-627, July.
    6. Juan Cota-Ruiz & Rafael Gonzalez-Landaeta & Jose David Diaz-Roman & Boris Mederos-Madrazo & Ernesto Sifuentes, 2019. "A weighted and distributed algorithm for multi-hop localization," International Journal of Distributed Sensor Networks, , vol. 15(7), pages 15501477198, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:1:p:23-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.