IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v51y2012i3p1297-1317.html
   My bibliography  Save this article

A benchmark library and a comparison of heuristic methods for the linear ordering problem

Author

Listed:
  • Rafael Martí
  • Gerhard Reinelt
  • Abraham Duarte

Abstract

No abstract is available for this item.

Suggested Citation

  • Rafael Martí & Gerhard Reinelt & Abraham Duarte, 2012. "A benchmark library and a comparison of heuristic methods for the linear ordering problem," Computational Optimization and Applications, Springer, vol. 51(3), pages 1297-1317, April.
  • Handle: RePEc:spr:coopap:v:51:y:2012:i:3:p:1297-1317
    DOI: 10.1007/s10589-010-9384-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-010-9384-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-010-9384-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Celso C. Ribeiro & Eduardo Uchoa & Renato F. Werneck, 2002. "A Hybrid GRASP with Perturbations for the Steiner Problem in Graphs," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 228-246, August.
    2. Fred Glover & T. Klastorin & D. Kongman, 1974. "Optimal Weighted Ancestry Relationships," Management Science, INFORMS, vol. 20(8), pages 1190-1193, April.
    3. T. Christof & G. Reinelt, 1996. "Combinatorial optimization and small polytopes," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 1-53, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. K. Karpouzos & K. L. Katsifarakis, 2021. "A new benchmark optimization problem of adaptable difficulty: theoretical considerations and practical testing," Operational Research, Springer, vol. 21(1), pages 231-250, March.
    2. Martin P.H. Panggabean, 2017. "Financial Intermediation Sector In Indonesia’s Production Pyramid," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 19(4), pages 385-402, April.
    3. Ceberio, Josu & Mendiburu, Alexander & Lozano, Jose A., 2015. "The linear ordering problem revisited," European Journal of Operational Research, Elsevier, vol. 241(3), pages 686-696.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irène Charon & Olivier Hudry, 2010. "An updated survey on the linear ordering problem for weighted or unweighted tournaments," Annals of Operations Research, Springer, vol. 175(1), pages 107-158, March.
    2. Ronconi, Débora P. & Henriques, Luís R.S., 2009. "Some heuristic algorithms for total tardiness minimization in a flowshop with blocking," Omega, Elsevier, vol. 37(2), pages 272-281, April.
    3. Abilio Lucena, 2005. "Non Delayed Relax-and-Cut Algorithms," Annals of Operations Research, Springer, vol. 140(1), pages 375-410, November.
    4. Denis Naddef & Giovanni Rinaldi, 2007. "The Symmetric Traveling Salesman Polytope: New Facets from the Graphical Relaxation," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 233-256, February.
    5. Juan Aparicio & Mercedes Landete & Juan F. Monge, 2020. "A linear ordering problem of sets," Annals of Operations Research, Springer, vol. 288(1), pages 45-64, May.
    6. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    7. Anna Martínez-Gavara & Vicente Campos & Micael Gallego & Manuel Laguna & Rafael Martí, 2015. "Tabu search and GRASP for the capacitated clustering problem," Computational Optimization and Applications, Springer, vol. 62(2), pages 589-607, November.
    8. Javier Alcaraz & Eva M. García-Nové & Mercedes Landete & Juan F. Monge, 2020. "The linear ordering problem with clusters: a new partial ranking," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 646-671, October.
    9. Mariusz Makuchowski, 2014. "Perturbation algorithm for a minimax regret minimum spanning tree problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(1), pages 37-49.
    10. Marti, Rafael, 2006. "Scatter Search--Wellsprings and Challenges," European Journal of Operational Research, Elsevier, vol. 169(2), pages 351-358, March.
    11. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    12. F. Rodriguez & C. Blum & C. García-Martínez & M. Lozano, 2012. "GRASP with path-relinking for the non-identical parallel machine scheduling problem with minimising total weighted completion times," Annals of Operations Research, Springer, vol. 201(1), pages 383-401, December.
    13. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Discussion Paper 2008-96, Tilburg University, Center for Economic Research.
    14. Pedrola, Oscar & Careglio, Davide & Klinkowski, Miroslaw & Velasco, Luis & Bergman, Keren & Solé-Pareta, Josep, 2013. "Metaheuristic hybridizations for the regenerator placement and dimensioning problem in sub-wavelength switching optical networks," European Journal of Operational Research, Elsevier, vol. 224(3), pages 614-624.
    15. Fabio C. S. Dias & Wladimir Araújo Tavares & José Robertty de Freitas Costa, 2020. "Reactive VNS algorithm for the maximum k-subset intersection problem," Journal of Heuristics, Springer, vol. 26(6), pages 913-941, December.
    16. Zhang-Hua Fu & Jin-Kao Hao, 2015. "Dynamic Programming Driven Memetic Search for the Steiner Tree Problem with Revenues, Budget, and Hop Constraints," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 221-237, May.
    17. Sebastian Sager & Michael Jung & Christian Kirches, 2011. "Combinatorial integral approximation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 363-380, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:51:y:2012:i:3:p:1297-1317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.