IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i3d10.1007_s00180-021-01164-6.html
   My bibliography  Save this article

Applying the rescaling bootstrap under imputation for a multistage sampling design

Author

Listed:
  • Christian Bruch

    (GESIS Leibniz Institute for the Social Science)

Abstract

In this paper, we propose a method that estimates the variance of an imputed estimator in a multistage sampling design. The method is based on the rescaling bootstrap for multistage sampling introduced by Preston (Surv Methodol 35(2):227–234, 2009). In his original version, this resampling method requires that the dataset includes only complete cases and no missing values. Thus, we propose two modifications for applying this method to nonresponse and imputation. These modifications are compared to other modifications in a Monte Carlo simulation study. The results of our simulation study show that our two proposed approaches are superior to the other modifications of the rescaling bootstrap and, in many situations, produce valid estimators for the variance of the imputed estimator in multistage sampling designs.

Suggested Citation

  • Christian Bruch, 2022. "Applying the rescaling bootstrap under imputation for a multistage sampling design," Computational Statistics, Springer, vol. 37(3), pages 1461-1494, July.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01164-6
    DOI: 10.1007/s00180-021-01164-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01164-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01164-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Pablo Burgard & Jan-Philipp Kolb & Hariolf Merkle & Ralf Münnich, 2017. "Synthetic data for open and reproducible methodological research in social sciences and official statistics," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 11(3), pages 233-244, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.
    2. Angelo Moretti, 2023. "Estimation of small area proportions under a bivariate logistic mixed model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3663-3684, August.
    3. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    4. Saeideh Kamgar & Florian Meinfelder & Ralf Münnich & Hamidreza Navvabpour, 2020. "Estimation within the new integrated system of household surveys in Germany," Statistical Papers, Springer, vol. 61(5), pages 2091-2117, October.
    5. Anne Konrad & Jan Pablo Burgard & Ralf Münnich, 2021. "A Two‐level GREG Estimator for Consistent Estimation in Household Surveys," International Statistical Review, International Statistical Institute, vol. 89(3), pages 635-656, December.
    6. Timo Schmid & Markus Zwick, 2017. "Vorwort der Herausgeber," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 11(3), pages 143-146, December.
    7. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2020. "A Study of Discontinuity Effects in Regression Inference based on Web-Augmented Mixed Mode Surveys," Research Papers in Economics 2020-03, University of Trier, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01164-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.