IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i3d10.1007_s00180-018-0845-4.html
   My bibliography  Save this article

Robust estimation for spatial autoregressive processes based on bounded innovation propagation representations

Author

Listed:
  • Grisel Maribel Britos

    (Universidad Nacional de Córdoba)

  • Silvia María Ojeda

    (Universidad Nacional de Córdoba)

Abstract

Robust methods have been a successful approach for dealing with contamination and noise in the context of spatial statistics and, in particular, in image processing. In this paper, we introduce a new robust method for spatial autoregressive models. Our method, called BMM-2D, relies on representing a two-dimensional autoregressive process with an auxiliary model to attenuate the effect of contamination (outliers). We compare the performance of our method with existing robust estimators and the least squares estimator via a comprehensive Monte Carlo simulation study, which considers different levels of replacement contamination and window sizes. The results show that the new estimator is superior to the other estimators, both in accuracy and precision. An application to image filtering highlights the findings and illustrates how the estimator works in practical applications.

Suggested Citation

  • Grisel Maribel Britos & Silvia María Ojeda, 2019. "Robust estimation for spatial autoregressive processes based on bounded innovation propagation representations," Computational Statistics, Springer, vol. 34(3), pages 1315-1335, September.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-018-0845-4
    DOI: 10.1007/s00180-018-0845-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0845-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0845-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raphael Gottardo & Adrian E. Raftery & Ka Yee Yeung & Roger E. Bumgarner, 2006. "Bayesian Robust Inference for Differential Gene Expression in Microarrays with Multiple Samples," Biometrics, The International Biometric Society, vol. 62(1), pages 10-18, March.
    2. repec:bla:biomet:v:62:y:2006:i:1:p:10-18:2 is not listed on IDEAS
    3. Ojeda, Silvia & Vallejos, Ronny & Bustos, Oscar, 2010. "A new image segmentation algorithm with applications to image inpainting," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2082-2093, September.
    4. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models II: spatial processes," LSE Research Online Documents on Economics 5416, London School of Economics and Political Science, LSE Library.
    5. Baran, Sándor & Pap, Gyula & van Zuijlen, Martien C. A., 2004. "Asymptotic inference for a nearly unstable sequence of stationary spatial AR models," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 53-61, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    2. Yong Bao, 2018. "The asymptotic covariance matrix of the QMLE in ARMA models," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 309-324, April.
    3. Lu, Zudi & Tjostheim, Dag & Yao, Qiwei, 2008. "Spatial smoothing, Nugget effect and infill asymptotics," LSE Research Online Documents on Economics 24133, London School of Economics and Political Science, LSE Library.
    4. repec:esx:essedp:767 is not listed on IDEAS
    5. Rosa Espejo & Nikolai Leonenko & Andriy Olenko & María Ruiz-Medina, 2015. "On a class of minimum contrast estimators for Gegenbauer random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 657-680, December.
    6. Zheng, Tingguo & Xiao, Han & Chen, Rong, 2015. "Generalized ARMA models with martingale difference errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 492-506.
    7. Qin Shao & Lijian Yang, 2017. "Oracally efficient estimation and consistent model selection for auto-regressive moving average time series with trend," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 507-524, March.
    8. Tianhao Wang & Yingcun Xia, 2015. "Whittle Likelihood Estimation of Nonlinear Autoregressive Models With Moving Average Residuals," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1083-1099, September.
    9. Baran, Sándor & Pap, Gyula, 2012. "Parameter estimation in a spatial unilateral unit root autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 282-305.
    10. Robinson, Peter M., 2011. "Inference on power law spatial trends (Running Title: Power Law Trends)," LSE Research Online Documents on Economics 58100, London School of Economics and Political Science, LSE Library.
    11. Norkutė, Milda & Westerlund, Joakim, 2019. "The factor analytical method for interactive effects dynamic panel models with moving average errors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 83-104.
    12. Joaquim Casellas & Luis Varona, 2012. "Modeling Skewness in Human Transcriptomes," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-5, June.
    13. Abdelkamel Alj & Rajae Azrak & Christophe Ley & Guy Mélard, 2017. "Asymptotic Properties of QML Estimators for VARMA Models with Time-dependent Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 617-635, September.
    14. Zheng, Tingguo & Chen, Rong, 2017. "Dirichlet ARMA models for compositional time series," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 31-46.
    15. Ruiz-Medina, M.D., 2011. "Spatial autoregressive and moving average Hilbertian processes," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 292-305, February.
    16. Shigeyuki Matsui & Shu Zeng & Takeharu Yamanaka & John Shaughnessy, 2008. "Sample Size Calculations Based on Ranking and Selection in Microarray Experiments," Biometrics, The International Biometric Society, vol. 64(1), pages 217-226, March.
    17. Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.
    18. Dimitriou-Fakalou, Chrysoula, 2019. "On accepting the edge-effect (for the inference of ARMA-type processes in Z2)," Econometrics and Statistics, Elsevier, vol. 10(C), pages 53-70.
    19. repec:cep:stiecm:/2011/556 is not listed on IDEAS
    20. Sheena Yu-Hsien Kao & Anil K. Bera, 2018. "Testing spatial regression models under nonregular conditions," Empirical Economics, Springer, vol. 55(1), pages 85-111, August.
    21. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    22. Baran, Sándor & Pap, Gyula, 2009. "On the least squares estimator in a nearly unstable sequence of stationary spatial AR models," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 686-698, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:3:d:10.1007_s00180-018-0845-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.