IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i2d10.1007_s00180-018-00865-9.html
   My bibliography  Save this article

Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality

Author

Listed:
  • Takayuki Yamada

    (Kagoshima University)

  • Tetsuto Himeno

    (Shiga University)

Abstract

This paper is concerned with the multivariate 3rd moment and its estimation. Mardia (Biometrika 57:519–530, 1970) and Srivastava (Stat Probab Lett 2:263–267, 1984) proposed the multivariate skewness and its estimator, independently. However, these estimators cannot be defined for the case in which the dimension p is larger than the sample size N. In this paper, we treat the multivariate 3rd moment $$\gamma $$ γ which is defined by using Hadamard product of observation vectors, and propose an estimate of $$\gamma $$ γ which is well defined when $$p>N$$ p > N . Based on the estimator, we propose a new test for multivariate normality. Under the null hypothesis, the test statistic is asymptotically standard normal, which is supported by Monte Carlo simulations. We calculate some empirical powers to see the performance of the test.

Suggested Citation

  • Takayuki Yamada & Tetsuto Himeno, 2019. "Estimation of multivariate 3rd moment for high-dimensional data and its application for testing multivariate normality," Computational Statistics, Springer, vol. 34(2), pages 911-941, June.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-018-00865-9
    DOI: 10.1007/s00180-018-00865-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-00865-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-00865-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Annaliisa Kankainen & Sara Taskinen & Hannu Oja, 2007. "Tests of multinormality based on location vectors and scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 357-379, November.
    2. Srivastava, M. S., 1984. "A measure of skewness and kurtosis and a graphical method for assessing multivariate normality," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 263-267, October.
    3. H. Holgersson, 2006. "A graphical method for assessing multivariate normality," Computational Statistics, Springer, vol. 21(1), pages 141-149, March.
    4. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    5. Måns Thulin, 2014. "Tests for multivariate normality based on canonical correlations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 189-208, June.
    6. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    7. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    8. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    9. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.
    2. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    3. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    4. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    5. Wangli Xu & Yanwen Li & Dawo Song, 2013. "Testing normality in mixed models using a transformation method," Statistical Papers, Springer, vol. 54(1), pages 71-84, February.
    6. Tanya Araujo & João Dias & Samuel Eleutério & Francisco Louçã, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Working Papers Department of Economics 2012/21, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    7. Ebner, Bruno, 2012. "Asymptotic theory for the test for multivariate normality by Cox and Small," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 368-379.
    8. Tanya Ara'ujo & Jo~ao Dias & Samuel Eleut'erio & Francisco Louc{c}~a, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Papers 1207.1202, arXiv.org.
    9. Måns Thulin, 2014. "Tests for multivariate normality based on canonical correlations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 189-208, June.
    10. Kim, Namhyun, 2016. "A robustified Jarque–Bera test for multivariate normality," Economics Letters, Elsevier, vol. 140(C), pages 48-52.
    11. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    12. Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    13. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    14. Araújo, Tanya & Dias, João & Eleutério, Samuel & Louçã, Francisco, 2013. "A measure of multivariate kurtosis for the identification of the dynamics of a N-dimensional market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3708-3714.
    15. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Manuel Denzer & Constantin Weiser, 2021. "Beyond F-statistic - A General Approach for Assessing Weak Identification," Working Papers 2107, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    17. Chételat, Didier & Wells, Martin T., 2016. "Improved second order estimation in the singular multivariate normal model," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 1-19.
    18. Jurgita Arnastauskaitė & Tomas Ruzgas & Mindaugas Bražėnas, 2021. "A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study," Mathematics, MDPI, vol. 9(23), pages 1-20, November.
    19. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    20. Chowdhury, Joydeep & Dutta, Subhajit & Arellano-Valle, Reinaldo B. & Genton, Marc G., 2022. "Sub-dimensional Mardia measures of multivariate skewness and kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:2:d:10.1007_s00180-018-00865-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.