IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i2d10.1007_s00180-016-0657-3.html
   My bibliography  Save this article

Use of EM algorithm for data reduction under sparsity assumption

Author

Listed:
  • Atanu Kumar Ghosh

    (Indian Statistical Institute)

  • Arnab Chakraborty

    (Indian Statistical Institute)

Abstract

Recent scientific applications produce data that are too large for storing or rendering for further statistical analysis. This motivates the construction of an optimum mechanism to choose only a subset of the available information and drawing inferences about the parent population using only the stored subset. This paper addresses the issue of estimation of parameter from such filtered data. Instead of all the observations we observe only a few chosen linear combinations of them and treat the remaining information as missing. From the observed linear combinations we try to estimate the parameter using EM based technique under the assumption that the parameter is sparse. In this paper we propose two related methods called ASREM and ESREM. The methods developed here are also used for hypothesis testing and construction of confidence interval. Similar data filtering approach already exists in signal sampling paradigm, for example, Compressive Sampling introduced by Candes et al. (Commun Pure Appl Math 59(8):1207–1223, 2006) and Donoho (IEEE Trans Inf Theory 52: 1289–1306, 2006). The methods proposed in this paper are not claimed to outperform all the available techniques of signal recovery, rather our methods are suggested as an alternative way of data compression using EM algorithm. However, we shall compare our methods to one standard algorithm, viz., robust signal recovery from noisy data using min- $$\ell _{1}$$ ℓ 1 with quadratic constraints. Finally we shall apply one of our methods to a real life dataset.

Suggested Citation

  • Atanu Kumar Ghosh & Arnab Chakraborty, 2017. "Use of EM algorithm for data reduction under sparsity assumption," Computational Statistics, Springer, vol. 32(2), pages 387-407, June.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0657-3
    DOI: 10.1007/s00180-016-0657-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0657-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0657-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Ning-Zhong & Zheng, Shu-Rong & Guo, Jianhua, 2005. "The restricted EM algorithm under inequality restrictions on the parameters," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 53-76, January.
    2. Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klugkist, Irene & Hoijtink, Herbert, 2009. "Obtaining similar null distributions in the normal linear model using computational methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 877-888, February.
    2. Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
    3. Iain L. MacDonald, 2021. "Is EM really necessary here? Examples where it seems simpler not to use EM," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 629-647, December.
    4. Deng, Lifeng & Ding, Jieli & Liu, Yanyan & Wei, Chengdong, 2018. "Regression analysis for the proportional hazards model with parameter constraints under case-cohort design," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 194-206.
    5. Özgür Asar & David Bolin & Peter J. Diggle & Jonas Wallin, 2020. "Linear mixed effects models for non‐Gaussian continuous repeated measurement data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1015-1065, November.
    6. Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0657-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.