Use of EM algorithm for data reduction under sparsity assumption
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-016-0657-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shi, Ning-Zhong & Zheng, Shu-Rong & Guo, Jianhua, 2005. "The restricted EM algorithm under inequality restrictions on the parameters," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 53-76, January.
- Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Klugkist, Irene & Hoijtink, Herbert, 2009. "Obtaining similar null distributions in the normal linear model using computational methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 877-888, February.
- Tian, Guo-Liang & Ng, Kai Wang & Tan, Ming, 2008. "EM-type algorithms for computing restricted MLEs in multivariate normal distributions and multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4768-4778, June.
- Iain L. MacDonald, 2021. "Is EM really necessary here? Examples where it seems simpler not to use EM," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 629-647, December.
- Deng, Lifeng & Ding, Jieli & Liu, Yanyan & Wei, Chengdong, 2018. "Regression analysis for the proportional hazards model with parameter constraints under case-cohort design," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 194-206.
- Özgür Asar & David Bolin & Peter J. Diggle & Jonas Wallin, 2020. "Linear mixed effects models for non‐Gaussian continuous repeated measurement data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1015-1065, November.
- Ding, Jieli & Tian, Guo-Liang & Yuen, Kam Chuen, 2015. "A new MM algorithm for constrained estimation in the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 135-151.
More about this item
Keywords
Compressive sampling; Data reduction; General linear hypothesis; Identifiability of parameter; Least norm solution; Restricted EM algorithm; Sparse data recovery;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0657-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.