IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i2p399-418.html
   My bibliography  Save this article

Bayesian variable selection in multinomial probit model for classifying high-dimensional data

Author

Listed:
  • Aijun Yang
  • Yunxian Li
  • Niansheng Tang
  • Jinguan Lin

Abstract

Selecting a small number of relevant genes for classification has received a great deal of attention in microarray data analysis. While the development of methods for microarray data with only two classes is relevant, developing more efficient algorithms for classification with any number of classes is important. In this paper, we propose a Bayesian stochastic search variable selection approach for multi-class classification, which can identify relevant genes by assessing sets of genes jointly. We consider a multinomial probit model with a generalized $$g$$ g -prior for the regression coefficients. An efficient algorithm using simulation-based MCMC methods are developed for simulating parameters from the posterior distribution. This algorithm is robust to the choice of initial value, and produces posterior probabilities of relevant genes for biological interpretation. We demonstrate the performance of the approach with two well-known gene expression profiling data: leukemia data, lymphoma data, SRBCTs data and NCI60 data. Compared with other classification approaches, our approach selects smaller numbers of relevant genes and obtains competitive classification accuracy based on obtained results. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Aijun Yang & Yunxian Li & Niansheng Tang & Jinguan Lin, 2015. "Bayesian variable selection in multinomial probit model for classifying high-dimensional data," Computational Statistics, Springer, vol. 30(2), pages 399-418, June.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:2:p:399-418
    DOI: 10.1007/s00180-014-0540-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0540-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0540-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, October.
    2. Lê Cao, Kim-Anh & Chabrier, Patrick, 2008. "ofw: An R Package to Select Continuous Variables for Multiclass Classification with a Stochastic Wrapper Method," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i09).
    3. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models," Journal of Econometrics, Elsevier, vol. 143(2), pages 291-316, April.
    4. P. J. Brown & M. Vannucci & T. Fearn, 1998. "Multivariate Bayesian variable selection and prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 627-641.
    5. Naijun Sha & Marina Vannucci & Mahlet G. Tadesse & Philip J. Brown & Ilaria Dragoni & Nick Davies & Tracy C. Roberts & Andrea Contestabile & Mike Salmon & Chris Buckley & Francesco Falciani, 2004. "Bayesian Variable Selection in Multinomial Probit Models to Identify Molecular Signatures of Disease Stage," Biometrics, The International Biometric Society, vol. 60(3), pages 812-819, September.
    6. Gupta, Mayetri & Ibrahim, Joseph G., 2007. "Variable Selection in Regression Mixture Modeling for the Discovery of Gene Regulatory Networks," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 867-880, September.
    7. Lee, Yoonkyung & Lin, Yi & Wahba, Grace, 2004. "Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 67-81, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Aijun & Jiang, Xuejun & Liu, Pengfei & Lin, Jinguan, 2016. "Sparse Bayesian multinomial probit regression model with correlation prior for high-dimensional data classification," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 241-247.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aijun Yang & Xuejun Jiang & Lianjie Shu & Jinguan Lin, 2017. "Bayesian variable selection with sparse and correlation priors for high-dimensional data analysis," Computational Statistics, Springer, vol. 32(1), pages 127-143, March.
    2. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    3. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    4. Min Wang & Xiaoqian Sun & Tao Lu, 2015. "Bayesian structured variable selection in linear regression models," Computational Statistics, Springer, vol. 30(1), pages 205-229, March.
    5. Baragatti, M. & Pommeret, D., 2012. "A study of variable selection using g-prior distribution with ridge parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1920-1934.
    6. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    7. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    8. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    9. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.
    10. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    11. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    12. Tina Birgitte Hansen & Jes Sanddal Lindholt & Axel Diederichsen & Rikke Søgaard, 2019. "Do Non-participants at Screening have a Different Threshold for an Acceptable Benefit–Harm Ratio than Participants? Results of a Discrete Choice Experiment," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 12(5), pages 491-501, October.
    13. Doyle, Orla & Fidrmuc, Jan, 2006. "Who favors enlargement?: Determinants of support for EU membership in the candidate countries' referenda," European Journal of Political Economy, Elsevier, vol. 22(2), pages 520-543, June.
    14. Tovar, Jorge, 2012. "Consumers’ Welfare and Trade Liberalization: Evidence from the Car Industry in Colombia," World Development, Elsevier, vol. 40(4), pages 808-820.
    15. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    16. Yamada, Katsunori & Sato, Masayuki, 2013. "Another avenue for anatomy of income comparisons: Evidence from hypothetical choice experiments," Journal of Economic Behavior & Organization, Elsevier, vol. 89(C), pages 35-57.
    17. Potoglou, Dimitris & Palacios, Juan & Feijoo, Claudio & Gómez Barroso, Jose-Luis, 2015. "The supply of personal information: A study on the determinants of information provision in e-commerce scenarios," 26th European Regional ITS Conference, Madrid 2015 127174, International Telecommunications Society (ITS).
    18. Sant'Anna, Ana Claudia & Bergtold, Jason & Shanoyan, Aleksan & Caldas, Marcellus & Granco, Gabriel, 2021. "Deal or No Deal? Analysis of Bioenergy Feedstock Contract Choice with Multiple Opt-out Options and Contract Attribute Substitutability," 2021 Conference, August 17-31, 2021, Virtual 315289, International Association of Agricultural Economists.
    19. Mark Morrison & Craig Nalder, 2009. "Willingness to Pay for Improved Quality of Electricity Supply Across Business Type and Location," The Energy Journal, , vol. 30(2), pages 117-134, April.
    20. Simon P. Anderson & André de Palma, 2012. "Competition for attention in the Information (overload) Age," RAND Journal of Economics, RAND Corporation, vol. 43(1), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:2:p:399-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.