IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i5p1065-1081.html
   My bibliography  Save this article

Statistical application of barycentric rational interpolants: an alternative to splines

Author

Listed:
  • Rose Baker
  • Dan Jackson

Abstract

Spline curves, originally developed by numerical analysts for interpolation, are widely used in statistical work, mainly as regression splines and smoothing splines. Barycentric rational interpolants have recently been developed by numerical analysts, but have yet seen very few statistical applications. We give the necesssary information to enable the reader to use barycentric rational interpolants, including a suggestion for a Bayesian prior distribution, and explore the possible statistical use of barycentric interpolants as an alternative to splines. We give the all the necessary formulae, compare the numerical accuracy to splines for some Monte-Carlo datasets, and apply both regression splines and barycentric interpolants to two real datasets. We also discuss the application of these interpolants to data smoothing, where smoothing splines would normally be used, and exemplify the use of smoothing interpolants with another real dataset. Our conclusion is that barycentric interpolants are as accurate as splines, and no more difficult to understand and program. They offer a viable alternative methodology. Copyright The Author(s) 2014

Suggested Citation

  • Rose Baker & Dan Jackson, 2014. "Statistical application of barycentric rational interpolants: an alternative to splines," Computational Statistics, Springer, vol. 29(5), pages 1065-1081, October.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1065-1081
    DOI: 10.1007/s00180-014-0480-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0480-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0480-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göran Kauermann & Jean D. Opsomer, 2011. "Data-driven selection of the spline dimension in penalized spline regression," Biometrika, Biometrika Trust, vol. 98(1), pages 225-230.
    2. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    3. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506.
    4. Muellerleile, P. & Mullen, B., 2006. "Sufficiency and stability of evidence for public health interventions using cumulative meta-analysis," American Journal of Public Health, American Public Health Association, vol. 96(3), pages 515-522.
    5. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baker, Rose D. & McHale, Ian G., 2017. "An empirical Bayes model for time-varying paired comparisons ratings: Who is the greatest women’s tennis player?," European Journal of Operational Research, Elsevier, vol. 258(1), pages 328-333.
    2. Blaž Krese & Erik Štrumbelj, 2021. "A Bayesian approach to time-varying latent strengths in pairwise comparisons," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.
    3. Baker, Rose D. & McHale, Ian G., 2018. "Time-varying ratings for international football teams," European Journal of Operational Research, Elsevier, vol. 267(2), pages 659-666.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    2. Blöchl, Andreas, 2014. "Trend Estimation with Penalized Splines as Mixed Models for Series with Structural Breaks," Discussion Papers in Economics 18446, University of Munich, Department of Economics.
    3. Kuhlenkasper, Torben & Steinhardt, Max Friedrich, 2017. "Who leaves and when? Selective outmigration of immigrants from Germany," Economic Systems, Elsevier, vol. 41(4), pages 610-621.
    4. Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
    5. Smith, Michael S. & Kauermann, Göran, 2011. "Bicycle commuting in Melbourne during the 2000s energy crisis: A semiparametric analysis of intraday volumes," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1846-1862.
    6. Marc Aerts & Niel Hens & Jeffrey Simonoff, 2010. "Model selection in regression based on pre-smoothing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1455-1472.
    7. Jan Serroyen & Geert Molenberghs & Marc Aerts & Ellen Vloeberghs & Peter Paul De Deyn & Geert Verbeke, 2010. "Flexible estimation of serial correlation in nonlinear mixed models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 833-846.
    8. Bloechl, Andreas, 2014. "Penalized Splines, Mixed Models and the Wiener-Kolmogorov Filter," Discussion Papers in Economics 21406, University of Munich, Department of Economics.
    9. Hübler, Olaf, 2017. "Health and weight – gender-specific linkages under heterogeneity, interdependence and resilience factors," Economics & Human Biology, Elsevier, vol. 26(C), pages 96-111.
    10. Binder, Harald & Sauerbrei, Willi, 2008. "Increasing the usefulness of additive spline models by knot removal," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5305-5318, August.
    11. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    12. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    13. Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
    14. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    15. Javier Parada Gómez Urquiza & Alejandro López-Feldman, 2013. "Poverty dynamics in rural Mexico: What does the future hold?," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 55-74, November.
    16. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    17. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    18. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    19. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    20. Timothy K.M. Beatty & Erling Røed Larsen, 2005. "Using Engel curves to estimate bias in the Canadian CPI as a cost of living index," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 482-499, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:5:p:1065-1081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.