IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v4y2005i4p339-351.html
   My bibliography  Save this article

Integer programming approaches in mean-risk models

Author

Listed:
  • Hiroshi Konno
  • Rei Yamamoto

Abstract

This paper is concerned with porfolio optimization problems with integer constraints. Such problems include, among others mean-risk problems with nonconvex transaction cost, minimal transaction unit constraints and cardinality constraints on the number of assets in a portfolio. These problems, though practically very important have been considered intractable because we have to solve nonlinear integer programming problems for which there exists no efficient algorithms. We will show that these problems can now be solved by the state- of-the-art integer programming methodologies if we use absolute deviation as the measure of risk. Copyright Springer-Verlag Berlin/Heidelberg 2005

Suggested Citation

  • Hiroshi Konno & Rei Yamamoto, 2005. "Integer programming approaches in mean-risk models," Computational Management Science, Springer, vol. 4(4), pages 339-351, November.
  • Handle: RePEc:spr:comgts:v:4:y:2005:i:4:p:339-351
    DOI: 10.1007/s10287-005-0038-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-005-0038-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-005-0038-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos Xidonas & George Mavrotas, 2014. "Comparative issues between linear and non-linear risk measures for non-convex portfolio optimization: evidence from the S&P 500," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1229-1242, July.
    2. Walter Murray & Howard Shek, 2012. "A local relaxation method for the cardinality constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 53(3), pages 681-709, December.
    3. Jongbin Jung & Seongmoon Kim, 2017. "Developing a dynamic portfolio selection model with a self-adjusted rebalancing method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(7), pages 766-779, July.
    4. Hoai An Le Thi & Mahdi Moeini, 2014. "Long-Short Portfolio Optimization Under Cardinality Constraints by Difference of Convex Functions Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 199-224, April.
    5. Katsuhiro Tanaka & Rei Yamamoto, 2023. "Ellipsoidal buffered area under the curve maximization model with variable selection in credit risk estimation," Computational Management Science, Springer, vol. 20(1), pages 1-28, December.
    6. Luca Di Persio & Nicola Fraccarolo, 2023. "Investment and Bidding Strategies for Optimal Transmission Management Dynamics: The Italian Case," Energies, MDPI, vol. 16(16), pages 1-16, August.
    7. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    8. Enrico Angelelli & Renata Mansini & M. Speranza, 2012. "Kernel Search: a new heuristic framework for portfolio selection," Computational Optimization and Applications, Springer, vol. 51(1), pages 345-361, January.
    9. Philipp Baumann & Norbert Trautmann, 2013. "Portfolio-optimization models for small investors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 345-356, June.
    10. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:4:y:2005:i:4:p:339-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.