IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v177y2024i9d10.1007_s10584-024-03794-3.html
   My bibliography  Save this article

Intensity, frequency and coverage of hydro-meteorological droughts and agriculture in the semi-arid basins of Maharashtra (India)

Author

Listed:
  • Rahul S. Todmal

    (Vidya Pratishthan’s Arts’ Science and Commerce College Baramati)

Abstract

The present investigation attempted to understand the intensity, frequency and spatial coverage of rainfall, runoff, groundwater and agricultural droughts in the semi-arid region of Maharashtra during 1981–2014. For this, various indices similar to Standardized Precipitation Index (SPI) (probabilistic nature) were applied. The linear regression, partial correlation and Student’s t-Test techniques were also used to evaluate inter-connections in hydro-meteorological and agricultural droughts. The hydrological deficiencies mimic the pattern of meteorological droughts in the study area with respect to coverage and intensity. Moderate hydro-meteorological droughts occurred frequently (once in 3 to 4 years). Additionally, the research highlighted an increase in the frequency and intensity of hydrological droughts during the post-1990 period, possibly linked to anthropogenic interventions (dam constructions and irrigation expansion). Despite El Niño events resulting in below-average rainfall, runoff, and groundwater levels in the study area, other phenomena such as Equatorial Indian Ocean Monsoon Oscillation (EQUINOO) / Indian Ocean Dipole (IOD) may have played a crucial role in major drought occurrences in 1986, 2003, and 2012 (events that happen once in > 30 years). The hydro-meteorological droughts lead to agricultural droughts, as they significantly affect the rainfed and irrigated crops in terms of productivity and cropped area. This effect was particularly notable during severe and region-wide droughts in 1985-86, 2002-03, and 2011-12. Furthermore, the investigation suggested that the study area is likely to experience hydro-meteorological deficiencies with ~ 25% probability between 2029 and 2050, coupled with a significant temperature rise (by 1.05 °C). This projected scenario could exacerbate water scarcity and agricultural distress in the future (up to 2050).

Suggested Citation

  • Rahul S. Todmal, 2024. "Intensity, frequency and coverage of hydro-meteorological droughts and agriculture in the semi-arid basins of Maharashtra (India)," Climatic Change, Springer, vol. 177(9), pages 1-24, September.
  • Handle: RePEc:spr:climat:v:177:y:2024:i:9:d:10.1007_s10584-024-03794-3
    DOI: 10.1007/s10584-024-03794-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-024-03794-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-024-03794-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gauranshi Raj Singh & Manoj Kumar Jain & Vivek Gupta, 2019. "Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 611-635, November.
    2. Karumuri Ashok & N. Saji, 2007. "On the impacts of ENSO and Indian Ocean dipole events on sub-regional Indian summer monsoon rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(2), pages 273-285, August.
    3. World Bank, 2008. "Climate Change Impacts in Drought and Flood Affected Areas : Case Studies in India," World Bank Publications - Reports 8075, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ward, Patrick S. & Ortega, David L. & Spielman, David J. & Singh, Vartika, 2013. "Farmer preferences for drought tolerance in hybrid versus inbred rice: Evidence from Bihar, India:," IFPRI discussion papers 1307, International Food Policy Research Institute (IFPRI).
    2. Abdol Rassoul Zarei & Mohammad Reza Mahmoudi, 2022. "Assessing and Predicting the Vulnerability to Agrometeorological Drought Using the Fuzzy-AHP and Second-order Markov Chain techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4403-4424, September.
    3. Divya Saini & Omvir Singh & Tejpal Sharma & Pankaj Bhardwaj, 2022. "Geoinformatics and analytic hierarchy process based drought vulnerability assessment over a dryland ecosystem of north-western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1427-1454, November.
    4. Emre Topçu, 2022. "Appraisal of seasonal drought characteristics in Turkey during 1925–2016 with the standardized precipitation index and copula approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 697-723, May.
    5. Barnwal, Prabhat & Kotani, Koji, 2013. "Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India," Ecological Economics, Elsevier, vol. 87(C), pages 95-109.
    6. Ward, Patrick S. & Ortega, David L. & Spielman, David J. & Singh, Vartika, 2014. "Heterogeneous Demand for Drought-Tolerant Rice: Evidence from Bihar, India," World Development, Elsevier, vol. 64(C), pages 125-139.
    7. Unmesh Patnaik & Prasun Kumar Das & Chandra Sekhar Bahinipati, 2016. "Coping with Climatic Shocks: Empirical Evidence from Rural Coastal Odisha, India," Global Business Review, International Management Institute, vol. 17(1), pages 161-175, February.
    8. K. S. Kavi Kumar, 2011. "Climate sensitivity of Indian agriculture: do spatial effects matter?," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 4(2), pages 221-235.
    9. Ji Eun Kim & Jisoo Yu & Jae-Hee Ryu & Joo-Heon Lee & Tae-Woong Kim, 2021. "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 707-724, October.
    10. Krishneel K. Sharma & Danielle C. Verdon-Kidd & Andrew D. Magee, 2023. "The influence of large-scale climate modes on tropical cyclone tracks in the southwest Pacific," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2285-2307, September.
    11. Anu Susan Sam & Ranjit Kumar & Harald Kächele & Klaus Müller, 2017. "Vulnerabilities to flood hazards among rural households in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1133-1153, September.
    12. Bairagi, Subir K. & Durand-Morat, Alvaro, 2021. "The Impacts of Droughts and Floods on the Global Rice Market," 2021 Annual Meeting, August 1-3, Austin, Texas 313859, Agricultural and Applied Economics Association.
    13. Ishwarya Balasubramanian & K.S. Kavi Kumar, 2010. "Climate Variability and Agricultural Productivity: Case Study of Rice Yields in Northern India," Working Papers 2010-054, Madras School of Economics,Chennai,India.
    14. Alark Saxena & Camilo Jesus Huneeus, 2022. "Establishing evidence for resilience: a case of monsoon flood-affected communities in the Gangetic Plains of South Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(5), pages 1-27, June.
    15. Kavya Johny & Maya L. Pai & S. Adarsh, 2022. "Investigating the multiscale teleconnections of Madden–Julian oscillation and monthly rainfall using time-dependent intrinsic cross-correlation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1795-1822, June.
    16. Nadjib Haied & Atif Foufou & Samira Khadri & Adel Boussaid & Mohamed Azlaoui & Nabil Bougherira, 2023. "Spatial and Temporal Assessment of Drought Hazard, Vulnerability and Risk in Three Different Climatic Zones in Algeria Using Two Commonly Used Meteorological Indices," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    17. Jagath Edirisinghe & Susantha Siriwardana & Sarath Siriwardana & Punsara Pras & ith, "undated". "Taxing the Pollution: A Case for Reducing the Environmental Impacts of Rubber Production in Sri Lanka," Working papers 5, The South Asian Network for Development and Environmental Economics.
    18. K.S. Kavi Kumar, 2009. "Climate Sensitivity of Indian Agriculture," Working Papers 2009-043, Madras School of Economics,Chennai,India.
    19. Arnold R. Salvacion, 2023. "Delineating village-level drought risk in Marinduque Island, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2993-3014, April.
    20. Richard Ackermann, 2012. "New Directions for Water Management in Indian Agriculture," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 4(2), pages 227-288, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:9:d:10.1007_s10584-024-03794-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.