IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i7d10.1007_s10584-023-03553-w.html
   My bibliography  Save this article

A multi-model framework to assess the role of R&D towards a decarbonized energy system

Author

Listed:
  • Larissa Nogueira

    (TNO)

  • Francesco Dalla Longa

    (TNO)

  • Lara Aleluia Reis

    (RFF-CMCC European Institute on Economics and the Environment (EIEE), Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC))

  • Laurent Drouet

    (RFF-CMCC European Institute on Economics and the Environment (EIEE), Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC))

  • Zoi Vrontisi

    (E3Modelling)

  • Kostas Fragkiadakis

    (E3Modelling)

  • Evangelos Panos

    (Paul Scherrer Institute)

  • Bob Zwaan

    (TNO
    University of Amsterdam
    Johns Hopkins University)

Abstract

Research and development (R&D) investments foster green innovation, which is key to decarbonize the energy system and attain long-term climate goals. In this paper, we link three integrated assessment models that possess a macroeconomic framework—WITCH, MERGE-ETL, and GEM-E3—with the bottom-up technology-rich energy system model TIAM-ECN, in order to quantitatively explore how investments in R&D can support deep decarbonization pathways. We take advantage of the endogenous technological learning feature of the first three models to derive R&D-induced capital cost reductions for strategic clusters of low-carbon technologies: solar energy, on- and offshore wind energy, carbon capture and storage, advanced fuels, and batteries for electric vehicles. We examine scenarios with different assumptions on CO2 mitigation and R&D policy. These assumptions are harmonized among our four models, and capital cost reductions driven by R&D are exogenously incorporated in TIAM-ECN, which enables a detailed assessment of the required energy transition. Our results show that the stringency of climate change mitigation policy remains the key factor influencing the diffusion of low-carbon technologies, while R&D can support mitigation goals and influence the contribution of different types of technologies. If implemented effectively and without worldwide barriers to knowledge spill-overs, R&D facilitates the deployment of mature technologies such as solar, wind, and electric vehicles, and enables lower overall energy system costs.

Suggested Citation

  • Larissa Nogueira & Francesco Dalla Longa & Lara Aleluia Reis & Laurent Drouet & Zoi Vrontisi & Kostas Fragkiadakis & Evangelos Panos & Bob Zwaan, 2023. "A multi-model framework to assess the role of R&D towards a decarbonized energy system," Climatic Change, Springer, vol. 176(7), pages 1-22, July.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:7:d:10.1007_s10584-023-03553-w
    DOI: 10.1007/s10584-023-03553-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03553-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03553-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Ockwell & Ambuj Sagar & Heleen Coninck, 2015. "Collaborative research and development (R&D) for climate technology transfer and uptake in developing countries: towards a needs driven approach," Climatic Change, Springer, vol. 131(3), pages 401-415, August.
    2. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams, 2016. "The Deep Decarbonization Pathways Project (DDPP): insights and emerging issues," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 1-6, June.
    3. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(7), pages 589-599, July.
    4. Deleidi, Matteo & Mazzucato, Mariana & Semieniuk, Gregor, 2020. "Neither crowding in nor out: Public direct investment mobilising private investment into renewable electricity projects," Energy Policy, Elsevier, vol. 140(C).
    5. Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
    6. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    7. David L. McCollum & Wenji Zhou & Christoph Bertram & Harmen-Sytze Boer & Valentina Bosetti & Sebastian Busch & Jacques Després & Laurent Drouet & Johannes Emmerling & Marianne Fay & Oliver Fricko & Sh, 2018. "Author Correction: Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals," Nature Energy, Nature, vol. 3(8), pages 699-699, August.
    8. Vassilis Daioglou & Steven K. Rose & Nico Bauer & Alban Kitous & Matteo Muratori & Fuminori Sano & Shinichiro Fujimori & Matthew J. Gidden & Etsushi Kato & Kimon Keramidas & David Klein & Florian Lebl, 2020. "Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study," Climatic Change, Springer, vol. 163(3), pages 1603-1620, December.
    9. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
    10. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    11. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    12. Nicholas Stern & Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," CEP Discussion Papers dp1773, Centre for Economic Performance, LSE.
    13. Zoi Vrontisi & Gunnar Luderer & Bert Saveyn & Kimon Keramidas & Lara Aleluia Reis & Lavinia Baumstark & Christoph Bertram & Harmen Sytze de Boer & Laurent Drouet & Kostas Fragkiadakis & Oliver Fricko , 2018. "Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment," Post-Print halshs-01782274, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    2. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.
    3. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.
    4. Gumber, Anurag & Zana, Riccardo & Steffen, Bjarne, 2024. "A global analysis of renewable energy project commissioning timelines," Applied Energy, Elsevier, vol. 358(C).
    5. Joëlle Noailly & Roger Smeets, 2022. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(1), pages 145-169, September.
    6. Wu, Qingyang & Wang, Yanying, 2022. "How does carbon emission price stimulate enterprises' total factor productivity? Insights from China's emission trading scheme pilots," Energy Economics, Elsevier, vol. 109(C).
    7. Marco Due~nas & Antoine Mandel, 2024. "Are EU low-carbon structural funds efficient in reducing emissions?," Papers 2408.01782, arXiv.org.
    8. Thomas Baldauf & Patrick Jochem, 2024. "Project finance or corporate finance for renewable energy? an agent-based insight," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(4), pages 759-805, October.
    9. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    10. Chrimes, Tommy & Gootjes, Bram & Kose, M. Ayhan & Wheeler, Collette, 2024. "The Great Reversal," CEPR Discussion Papers 19090, C.E.P.R. Discussion Papers.
    11. Perdana, Sigit & Vielle, Marc, 2022. "Making the EU Carbon Border Adjustment Mechanism acceptable and climate friendly for least developed countries," Energy Policy, Elsevier, vol. 170(C).
    12. Qian Zhang & Christopher Kennedy & Tao Wang & Wendong Wei & Jiashuo Li & Lei Shi, 2020. "Transforming the coal and steel nexus for China's eco‐civilization: Interplay between rail and energy infrastructure," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1352-1363, December.
    13. Zohra Dradra & Chokri Abdennadher, 2023. "Modeling the effects of renewable energy on sustainable development: evidence from simultaneous equations models," Economic Change and Restructuring, Springer, vol. 56(4), pages 2111-2128, August.
    14. Dafermos, Yannis & Nikolaidi, Maria, 2021. "How can green differentiated capital requirements affect climate risks? A dynamic macrofinancial analysis," Journal of Financial Stability, Elsevier, vol. 54(C).
    15. Laura Cavalli & Mia Alibegovic & Edward Cruickshank & Luca Farnia & Ilenia G. Romani, 2023. "The impact of EU Structural Funds on the national sustainable development strategy: a methodological application," Regional Studies, Regional Science, Taylor & Francis Journals, vol. 10(1), pages 52-69, December.
    16. Naoyuki Yoshino & Tim Schloesser & Farhad Taghizadeh‐Hesary, 2021. "Social funding of green financing: An application of distributed ledger technologies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6060-6073, October.
    17. Polzin, Friedemann & Sanders, Mark, 2020. "How to finance the transition to low-carbon energy in Europe?," Energy Policy, Elsevier, vol. 147(C).
    18. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    19. Zhang, Mingming & Song, Wenwen & Liu, Liyun & Zhou, Dequn, 2024. "Optimal investment portfolio strategy for carbon neutrality of power enterprises," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    20. Joelle Noailly; Roger Smeets, 2021. "Financing Energy Innovation: Internal Finance and the Direction of Technical Change," CIES Research Paper series 69-2021, Centre for International Environmental Studies, The Graduate Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:7:d:10.1007_s10584-023-03553-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.