IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v169y2021i3d10.1007_s10584-021-03265-z.html
   My bibliography  Save this article

Identifying and correcting biases in localized downscaling estimates of daily precipitation return values

Author

Listed:
  • Mark D. Risser

    (Lawrence Berkeley National Laboratory)

  • Daniel R. Feldman

    (Lawrence Berkeley National Laboratory)

  • Michael F. Wehner

    (Lawrence Berkeley National Laboratory)

  • David W. Pierce

    (Scripps Institution of Oceanography)

  • Jeffrey R. Arnold

    (US Army Corps of Engineers)

Abstract

Extreme precipitation events are a major cause of economic damage and disruption, and need to be addressed for increasing resilience to a changing climate, particularly at the local scale. Practitioners typically want to understand local changes at spatial scales much smaller than the native resolution of most Global Climate Models, for which downscaling techniques are used to translate planetary-to-regional scale change information to local scales. However, users of statistically downscaled outputs should be aware that how the observational data used to train the statistical models is constructed determines key properties of the downscaled solutions. Specifically for one such downscaling approach, when considering seasonal return values of extreme daily precipitation, we find that the Localized Constructed Analogs (LOCA) method produces a significant low bias in return values due to choices made in building the observational data set used to train LOCA. The LOCA low biases in daily extremes are consistent across event extremity, but do not degrade the overall performance of LOCA-derived changes in extreme daily precipitation. We show that the low (negative) bias in daily extremes is a function of a time-of-day adjustment applied to the training data and the manner of gridding daily precipitation data. The effects of these choices are likely to affect other downscaling methods trained with observations made in the same way. The results developed here show that efforts to improve resilience at the local level using extreme precipitation projections can benefit from using products specifically created to properly capture the statistics of extreme daily precipitation events.

Suggested Citation

  • Mark D. Risser & Daniel R. Feldman & Michael F. Wehner & David W. Pierce & Jeffrey R. Arnold, 2021. "Identifying and correcting biases in localized downscaling estimates of daily precipitation return values," Climatic Change, Springer, vol. 169(3), pages 1-20, December.
  • Handle: RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03265-z
    DOI: 10.1007/s10584-021-03265-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03265-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03265-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jie Chen & Xunchang John Zhang, 2021. "Challenges and potential solutions in statistical downscaling of precipitation," Climatic Change, Springer, vol. 165(3), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Espoir M. Bagula & Jackson Gilbert M. Majaliwa & Gustave N. Mushagalusa & Twaha A. Basamba & John-Baptist Tumuhairwe & Jean-Gomez M. Mondo & Patrick Musinguzi & Cephas B. Mwimangire & GĂ©ant B. Chuma &, 2022. "Climate Change Effect on Water Use Efficiency under Selected Soil and Water Conservation Practices in the Ruzizi Catchment, Eastern D.R. Congo," Land, MDPI, vol. 11(9), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:169:y:2021:i:3:d:10.1007_s10584-021-03265-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.