IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v166y2021i3d10.1007_s10584-021-03120-1.html
   My bibliography  Save this article

Changes in the diurnal temperature range over East Asia from 1901 to 2018 and its relationship with precipitation

Author

Listed:
  • Xiubao Sun

    (Chinese Academy of Sciences
    Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
    Chinese Academy of Sciences)

  • Chunzai Wang

    (Chinese Academy of Sciences
    Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
    Chinese Academy of Sciences)

  • Guoyu Ren

    (China University of Geosciences
    China Meteorological Administration)

Abstract

Since the 1950s, the East Asian diurnal temperature range (DTR), defined as the difference between the daily maximum (Tmax) and minimum temperatures (Tmin), has gradually decreased. Precipitation changes have often been cited as a primary cause of the change. However, the East Asian DTR change before 1950 and its relationship with precipitation remain unclear. Here, we used a newly developed China Meteorological Administration-Land Surface Air Temperature dataset v1.1 to examine the climatological patterns and long-term trends of the DTR in East Asia from 1901 to 2018 and its relationship with precipitation. The mean annual DTR averaged over East Asia for 1951–2018 was approximately 10.0 °C. East Asian DTR changes during 1901–2018 show two distinct characteristics. First, the DTR decreased significantly by approximately 0.60 °C during 1901–2018, and the decrease rate in the second half of the twentieth century (by ~0.53 °C) was significantly larger than that over the rest of the Northern Hemisphere and the global land due to rapid urbanization over East Asia. Second, before the 1950s, the DTR in East Asia showed a significant non-linear increase especially in middle latitude areas, mainly due to the warming rate of Tmax is higher than that of Tmin. Additionally, we found that the spatial pattern of long-term DTR change shows a significant negative correlation with mean precipitation patterns except in arid and semi-arid areas during 1901–2018. The decreasing trend of DTR gradually became smaller from arid regions to humid regions during 1901–2018, mainly because the difference between Tmax and Tmin warming rate gradually became smaller.

Suggested Citation

  • Xiubao Sun & Chunzai Wang & Guoyu Ren, 2021. "Changes in the diurnal temperature range over East Asia from 1901 to 2018 and its relationship with precipitation," Climatic Change, Springer, vol. 166(3), pages 1-17, June.
  • Handle: RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03120-1
    DOI: 10.1007/s10584-021-03120-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03120-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03120-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai & Anthony D. Del Genio & Inez Y. Fung, 1997. "Clouds, precipitation and temperature range," Nature, Nature, vol. 386(6626), pages 665-666, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianliang Zhang & Tim Rademacher & Hongyan Liu & Lu Wang & Rubén D. Manzanedo, 2023. "Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Guoyu Ren & Johnny C. L. Chan & Hisayuki Kubota & Zhongshi Zhang & Jinbao Li & Yongxiang Zhang & Yingxian Zhang & Yuda Yang & Yuyu Ren & Xiubao Sun & Yun Su & Yuhui Liu & Zhixin Hao & Xiaoying Xue & Y, 2021. "Historical and recent change in extreme climate over East Asia," Climatic Change, Springer, vol. 168(3), pages 1-19, October.
    3. Silius M. Vandeskog & Thordis L. Thorarinsdottir & Ingelin Steinsland & Finn Lindgren, 2022. "Quantile based modeling of diurnal temperature range with the five‐parameter lambda distribution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamila Veselá & Lucie Severová & Roman Svoboda, 2022. "The Impact of Temperature and Precipitation Change on the Production of Grapes in the Czech Republic," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    2. P. Rohini & M. Rajeevan & V. K. Soni, 2022. "Trends in diurnal variation of surface air temperatures over India during hot weather (April–June) season," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1815-1827, November.
    3. Ziqian Zhong & Bin He & Hans W. Chen & Deliang Chen & Tianjun Zhou & Wenjie Dong & Cunde Xiao & Shang-ping Xie & Xiangzhou Song & Lanlan Guo & Ruiqiang Ding & Lixia Zhang & Ling Huang & Wenping Yuan &, 2023. "Reversed asymmetric warming of sub-diurnal temperature over land during recent decades," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Pritanka Sandbhor & T. P. Singh & Mahesh Kalshettey, 2022. "Spatiotemporal change in urban landscape and its effect on behavior of diurnal temperature range: a case study of Pune District, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 646-665, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03120-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.