IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i4d10.1007_s10584-018-2155-9.html
   My bibliography  Save this article

Terrestrial primary productivity indicators for inclusion in the National Climate Indicators System

Author

Listed:
  • Matthew O. Jones

    (University of Montana)

  • Steven W. Running

    (University of Montana)

  • John S. Kimball

    (University of Montana)

  • Nathaniel P. Robinson

    (University of Montana)

  • Brady W. Allred

    (University of Montana)

Abstract

The National Climate Indicators System (NCIS) aims to provide a suite of systematically updated, easily interpretable, and policy relevant national metrics of key physical, ecological, and societal conditions. The NCIS will distill and communicate complex scientific information to a broad audience as part of sustained National Climate Assessments. The current NCIS has made significant strides in defining its scope, providing an initial suite of indicators, and outlining its future development goals. In line with the scope and aims of the NCIS, we present a set of terrestrial primary productivity indicators that are scientifically defensible, scalable, directly related to climate, nationally important, built on existing agency efforts, and linked to the conceptual framework of the NCIS. The Gross Primary Productivity (GPP) and Net Primary Productivity (NPP) indicators provide seasonal and annual metrics of the growth of all plant material across the contiguous U.S., Alaska, Hawaii, and Puerto Rico. The GPP and NPP products used to produce the indicators have become key carbon measurements of environmental health and ecosystem services, including food, fiber, and fuels supporting national economies, human sustainability, and quality of life. We demonstrate how the proposed GPP and NPP indicators are relevant across indicator system sector topics of Forests, Grassland/Rangelands/Pastures, Agriculture, Wildfire, and Seasonal Timing and Phenology, can be used in concert with existing proposed indicators, and will aid to filling current gaps in the NCIS.

Suggested Citation

  • Matthew O. Jones & Steven W. Running & John S. Kimball & Nathaniel P. Robinson & Brady W. Allred, 2020. "Terrestrial primary productivity indicators for inclusion in the National Climate Indicators System," Climatic Change, Springer, vol. 163(4), pages 1855-1868, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:4:d:10.1007_s10584-018-2155-9
    DOI: 10.1007/s10584-018-2155-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2155-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2155-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashley Ballantyne & William Smith & William Anderegg & Pekka Kauppi & Jorge Sarmiento & Pieter Tans & Elena Shevliakova & Yude Pan & Benjamin Poulter & Alessandro Anav & Pierre Friedlingstein & Richar, 2017. "Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration," Nature Climate Change, Nature, vol. 7(2), pages 148-152, February.
    2. Melissa A. Kenney & Anthony C. Janetos & Glynis C. Lough, 2016. "Building an integrated U.S. National Climate Indicators System," Climatic Change, Springer, vol. 135(1), pages 85-96, March.
    3. Matthew Reeves & Adam Moreno & Karen Bagne & Steven Running, 2014. "Estimating climate change effects on net primary production of rangelands in the United States," Climatic Change, Springer, vol. 126(3), pages 429-442, October.
    4. Melissa Kenney & Anthony Janetos & Glynis Lough, 2016. "Building an integrated U.S. National Climate Indicators System," Climatic Change, Springer, vol. 135(1), pages 85-96, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis S. Ojima & Rebecca Aicher & Steven R. Archer & Derek W. Bailey & Susan M. Casby-Horton & Nancy Cavallaro & Julian J. Reyes & John A. Tanaka & Robert A. Washington-Allen, 2020. "A climate change indicator framework for rangelands and pastures of the USA," Climatic Change, Springer, vol. 163(4), pages 1733-1750, December.
    2. Melissa A. Kenney & Anthony C. Janetos, 2020. "National indicators of climate changes, impacts, and vulnerability," Climatic Change, Springer, vol. 163(4), pages 1695-1704, December.
    3. Elisabeth M. Hamin & Yaser Abunnasr & Max Roman Dilthey & Pamela K. Judge & Melissa A. Kenney & Paul Kirshen & Thomas C. Sheahan & Don J. DeGroot & Robert L. Ryan & Brain G. McAdoo & Leonard Nurse & J, 2018. "Pathways to Coastal Resiliency: The Adaptive Gradients Framework," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    4. Michael D. Gerst & Melissa A. Kenney & Irina Feygina, 2021. "Improving the usability of climate indicator visualizations through diagnostic design principles," Climatic Change, Springer, vol. 166(3), pages 1-22, June.
    5. Jake F. Weltzin & Julio L. Betancourt & Benjamin I. Cook & Theresa M. Crimmins & Carolyn A. F. Enquist & Michael D. Gerst & John E. Gross & Geoffrey M. Henebry & Rebecca A. Hufft & Melissa A. Kenney &, 2020. "Seasonality of biological and physical systems as indicators of climatic variation and change," Climatic Change, Springer, vol. 163(4), pages 1755-1771, December.
    6. Miren Lorente & S. Gauthier & P. Bernier & C. Ste-Marie, 2020. "Tracking forest changes: Canadian Forest Service indicators of climate change," Climatic Change, Springer, vol. 163(4), pages 1839-1853, December.
    7. Ann Y. Liu & Juli M. Trtanj & Erin K. Lipp & John M. Balbus, 2021. "Toward an integrated system of climate change and human health indicators: a conceptual framework," Climatic Change, Springer, vol. 166(3), pages 1-16, June.
    8. Thomas J. Wilbanks & Rae Zimmerman & Susan Julius & Paul Kirshen & Joel B. Smith & Richard Moss & William Solecki & Matthias Ruth & Stephen Conrad & Steven J. Fernandez & Michael S. Matthews & Michael, 2020. "Toward indicators of the performance of US infrastructures under climate change risks," Climatic Change, Springer, vol. 163(4), pages 1795-1813, December.
    9. Sarah M. Anderson & Linda S. Heath & Marla R. Emery & Jeffrey A. Hicke & Jeremy S. Littell & Alan Lucier & Jeffrey G. Masek & David L. Peterson & Richard Pouyat & Kevin M. Potter & Guy Robertson & Jin, 2021. "Developing a set of indicators to identify, monitor, and track impacts and change in forests of the United States," Climatic Change, Springer, vol. 165(1), pages 1-16, March.
    10. Lori Bruhwiler & Sourish Basu & James H. Butler & Abhishek Chatterjee & Ed Dlugokencky & Melissa A. Kenney & Allison McComiskey & Stephen A. Montzka & Diane Stanitski, 2021. "Observations of greenhouse gases as climate indicators," Climatic Change, Springer, vol. 165(1), pages 1-18, March.
    11. Kristie L. Ebi & Christopher Boyer & Kathryn J. Bowen & Howard Frumkin & Jeremy Hess, 2018. "Monitoring and Evaluation Indicators for Climate Change-Related Health Impacts, Risks, Adaptation, and Resilience," IJERPH, MDPI, vol. 15(9), pages 1-11, September.
    12. William Solecki & Cynthia Rosenzweig, 2020. "Indicators and monitoring systems for urban climate resiliency," Climatic Change, Springer, vol. 163(4), pages 1815-1837, December.
    13. Patricia M. Clay & Jennifer Howard & D. Shallin Busch & Lisa L. Colburn & Amber Himes-Cornell & Steven S. Rumrill & Stephani G. Zador & Roger B. Griffis, 2020. "Ocean and coastal indicators: understanding and coping with climate change at the land-sea interface," Climatic Change, Springer, vol. 163(4), pages 1773-1793, December.
    14. Melissa A. Kenney & Anthony C. Janetos & Michael D. Gerst, 2020. "A framework for national climate indicators," Climatic Change, Springer, vol. 163(4), pages 1705-1718, December.
    15. Katharine L. Jacobs & James L. Buizer & Susanne C. Moser, 2016. "The third US national climate assessment: innovations in science and engagement," Climatic Change, Springer, vol. 135(1), pages 1-7, March.
    16. Katharine Jacobs & James Buizer & Susanne Moser, 2016. "The third US national climate assessment: innovations in science and engagement," Climatic Change, Springer, vol. 135(1), pages 1-7, March.
    17. Christa D. Peters-Lidard & Kevin C. Rose & Julie E. Kiang & Michael L. Strobel & Michael L. Anderson & Aaron R. Byrd & Michael J. Kolian & Levi D. Brekke & Derek S. Arndt, 2021. "Indicators of climate change impacts on the water cycle and water management," Climatic Change, Springer, vol. 165(1), pages 1-23, March.
    18. Jun Zhang & Xufeng Wang & Jun Ren, 2021. "Simulation of Gross Primary Productivity Using Multiple Light Use Efficiency Models," Land, MDPI, vol. 10(3), pages 1-10, March.
    19. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Jianjian He & Pengyan Zhang & Wenlong Jing & Yuhang Yan, 2018. "Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming," Sustainability, MDPI, vol. 10(10), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:4:d:10.1007_s10584-018-2155-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.