IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v155y2019i1d10.1007_s10584-019-02450-5.html
   My bibliography  Save this article

Impacts of climate warming, cultivar shifts, and phenological dates on rice growth period length in China after correction for seasonal shift effects

Author

Listed:
  • Tao Ye

    (Beijing Normal University
    Boston University)

  • Shuo Zong

    (Beijing Normal University)

  • Axel Kleidon

    (Max Planck Institute for Biogeochemistry)

  • Wenping Yuan

    (Sun Yat-Sen University)

  • Yao Wang

    (Beijing Normal University)

  • Peijun Shi

    (Beijing Normal University)

Abstract

Crop phenology changes are important indicators of climate change. Climate change impacts on crop phenology are generally investigated through statistical analysis of the relationship between growth period length and growth period mean temperature. However, growth periods may be either earlier or later in a given year; hence, changes in mean temperature indicate both the effects of climate change and those attributable to seasonal temperature differences. Failure to consider temperature change resulting from seasonal shifts can lead to biased estimation of warming trends and their corresponding impact on phenology. We evaluated this potential bias in rice phenology change in 892 phenology series from China by applying time series regression control for phenological dates. The results indicate that the true magnitudes of climate change for early rice, late rice, and single rice are 0.20–0.56, 0.23–0.86, and 0.28–0.38 K/decade, after correction for the effects of seasonal shifts. The effects of seasonal shifts of growth periods led to underestimates of the magnitude of climate change by 0.16–0.22 and 0.05–0.08 K/decade for early rice and single rice, respectively, and an overestimate of the effect for late rice of 0.02–0.06 K/decade. Correspondingly, the net warming impacts on growth period length after correcting for the effects of seasonal shifts were − 2.7 d/K for early rice, − 4.8 d/K for late rice, and − 3.1 d/K for single rice, which were weaker for early and single rice, but stronger for late rice, relative to previous reports. Changes in growth period length were most closely associated with variation in phenological dates, while their relationship with climate change was less pronounced. Our results indicate that earlier phenological dates and prolonged-duration cultivars have been adopted to offset the impact of climate change, providing further evidence of active adaptation of rice cultivation practice to climate change in China.

Suggested Citation

  • Tao Ye & Shuo Zong & Axel Kleidon & Wenping Yuan & Yao Wang & Peijun Shi, 2019. "Impacts of climate warming, cultivar shifts, and phenological dates on rice growth period length in China after correction for seasonal shift effects," Climatic Change, Springer, vol. 155(1), pages 127-143, July.
  • Handle: RePEc:spr:climat:v:155:y:2019:i:1:d:10.1007_s10584-019-02450-5
    DOI: 10.1007/s10584-019-02450-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-019-02450-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-019-02450-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yahui Guo & Wenxiang Wu & Yumei Liu & Zhaofei Wu & Xiaojun Geng & Yaru Zhang & Christopher Robin Bryant & Yongshuo Fu, 2020. "Impacts of Climate and Phenology on the Yields of Early Mature Rice in China," Sustainability, MDPI, vol. 12(23), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:155:y:2019:i:1:d:10.1007_s10584-019-02450-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.