IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v136y2016i2d10.1007_s10584-016-1611-7.html
   My bibliography  Save this article

Direct radiative effects of tropospheric aerosols on changes of global surface soil moisture

Author

Listed:
  • Shaoqing Liu

    (Purdue University)

  • Min Chen

    (Purdue University
    Carnegie Institution for Science)

  • Qianlai Zhuang

    (Purdue University
    Purdue University)

Abstract

A coupled modeling framework including a terrestrial ecosystem model and an atmospheric radiative transfer model is used to evaluate the aerosols’ direct radiative effects on the surface soil moisture in global terrestrial ecosystems during 2003–2010. We conduct two sets of model runs with and without aerosols in a hindcast mode. Comparison analysis indicates that the simulated soil moisture is comparable with other existing products and satellite retrievals. Simulations with aerosol loadings show an increase in the surface soil moisture by 3.8 ± 0.4 % and 4.1 ± 0.5 % during growing seasons (June to September) in temperate and boreal Northern Hemisphere (>10 °N) and the whole year in tropical regions (−10°S~10°N). This positive effect is as large as 30 % in dense-vegetated ecosystems, such as tropical forests and temperate broadleaf evergreen forests. The effect of aerosols on soil moisture varies with local leaf area index and climate, and exhibits seasonal variations. Surface soil moisture is persistently affected by high aerosols loadings in Amazonian tropical forests during drought seasons of 2005 and 2010. This study highlights the importance to consider the aerosols’ effects in impacting the soil moisture dynamics of the global terrestrial ecosystems.

Suggested Citation

  • Shaoqing Liu & Min Chen & Qianlai Zhuang, 2016. "Direct radiative effects of tropospheric aerosols on changes of global surface soil moisture," Climatic Change, Springer, vol. 136(2), pages 175-187, May.
  • Handle: RePEc:spr:climat:v:136:y:2016:i:2:d:10.1007_s10584-016-1611-7
    DOI: 10.1007/s10584-016-1611-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1611-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1611-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher M. Taylor & Richard A. M. de Jeu & Françoise Guichard & Phil P. Harris & Wouter A. Dorigo, 2012. "Afternoon rain more likely over drier soils," Nature, Nature, vol. 489(7416), pages 423-426, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayoola O., Oluwadare & Harald, Kunstmann & Esolomo J., Oluwadare & Jan, Bliefernicht, 2022. "Seasonal And Diurnal Variation Of Surface Energy Fluxes And Surface Characteristics Over A Semiarid Grassland In West Africa," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(1), February.
    2. Xiaodan Zhao & Wenlong Jing & Pengyan Zhang, 2017. "Mapping Fine Spatial Resolution Precipitation from TRMM Precipitation Datasets Using an Ensemble Learning Method and MODIS Optical Products in China," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    3. Hsin Hsu & Paul A. Dirmeyer, 2023. "Soil moisture-evaporation coupling shifts into new gears under increasing CO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Junying Fang & Yu Du, 2022. "A global survey of diurnal offshore propagation of rainfall," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:136:y:2016:i:2:d:10.1007_s10584-016-1611-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.