IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v133y2015i2p169-178.html
   My bibliography  Save this article

Effect of methane leakage on the greenhouse gas footprint of electricity generation

Author

Listed:
  • Nicolas Sanchez
  • David Mays

Abstract

For the purpose of generating electricity, what leakage rate renders the greenhouse gas (GHG) footprint of natural gas equivalent to that of coal? This paper answers this question using a simple model, which assumes that the comprehensive GHG footprint is the sum of the carbon dioxide-equivalent emissions resulting from (1) electricity generation and (2) natural gas leakage. The emissions resulting from electricity generation are taken from published life-cycle assessments (LCAs), whereas the emissions from natural gas leakage are estimated assuming that natural gas is 80 % methane, whose global warming potential (GWP) is calculated using equations provided by the Intergovernmental Panel on Climate Change (IPCC). Results, presented on a straightforward plot of GHG footprint versus time horizon, show that natural gas leakage of 2.0 % or 4.8 % eliminates half of natural gas’s GHG footprint advantage over coal at 20- or 100-year time horizons, respectively. Leakage of 3.9 % or 9.1 % completely eliminates the GHG footprint advantage at 20- and 100-year time horizons, respectively. A two-parameter power law approximation of the IPCC’s equation for GWP is utilized and gives equivalent results. Results indicate that leakage control is essential for natural gas to deliver a smaller GHG footprint than coal. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Nicolas Sanchez & David Mays, 2015. "Effect of methane leakage on the greenhouse gas footprint of electricity generation," Climatic Change, Springer, vol. 133(2), pages 169-178, November.
  • Handle: RePEc:spr:climat:v:133:y:2015:i:2:p:169-178
    DOI: 10.1007/s10584-015-1471-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1471-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1471-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voorspools, Kris R. & Brouwers, Els A. & D'haeseleer, William D., 2000. "Energy content and indirect greenhouse gas emissions embedded in [`]emission-free' power plants: results for the Low Countries," Applied Energy, Elsevier, vol. 67(3), pages 307-330, November.
    2. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    3. Tom Wigley, 2011. "Coal to gas: the influence of methane leakage," Climatic Change, Springer, vol. 108(3), pages 601-608, October.
    4. Jeff Tollefson, 2013. "Methane leaks erode green credentials of natural gas," Nature, Nature, vol. 493(7430), pages 12-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harvey, L.D. Danny, 2018. "Cost and energy performance of advanced light duty vehicles: Implications for standards and subsidies," Energy Policy, Elsevier, vol. 114(C), pages 1-12.
    2. Zhang, Xiaochun & Myhrvold, Nathan P. & Hausfather, Zeke & Caldeira, Ken, 2016. "Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems," Applied Energy, Elsevier, vol. 167(C), pages 317-322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    3. Paul Calanter, 2015. "Economic And Environmental Aspects Associated With The Technologies For Electricity Production From Conventional Sources And Measures To Mitigate The Produced Impacts," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 3(2), pages 150-160, November.
    4. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    5. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    6. Lueken, Roger & Klima, Kelly & Griffin, W. Michael & Apt, Jay, 2016. "The climate and health effects of a USA switch from coal to gas electricity generation," Energy, Elsevier, vol. 109(C), pages 1160-1166.
    7. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    8. Dr Barry Naughten, 2013. "Emissions Pricing, 'Complementary Policies' and 'Direct Action' in the Australian Electricity Supply Sector: 'Lock-in' and Investment," CCEP Working Papers 1304, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    9. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    10. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    11. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    12. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    13. Iosifov Valeriy Victorovich & Evgenii Yu. Khrustalev & Sergey N. Larin & Oleg E. Khrustalev, 2021. "The Linear Programming Problem of Regional Energy System Optimization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 281-288.
    14. Solomon Hsiang & Robert E. Kopp, 2018. "An Economist's Guide to Climate Change Science," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 3-32, Fall.
    15. Rivera, Nathaly M. & Loveridge, Scott, 2022. "Coal-to-gas fuel switching and its effects on housing prices," Energy Economics, Elsevier, vol. 106(C).
    16. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    17. Makena Coffman & Paul Bernstein & Sherilyn Wee & Clarice Schafer, 2014. "An Economic and GHG Analysis of LNG in Hawaii," Working Papers 2014-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Jeffrey C. Peters & Thomas W. Hertel, 2017. "Achieving the Clean Power Plan 2030 CO2 Target with the New Normal in Natural Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    19. Valerii Havrysh & Antonina Kalinichenko & Edyta Szafranek & Vasyl Hruban, 2022. "Agricultural Land: Crop Production or Photovoltaic Power Plants," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    20. Eleanor Stephenson & Karena Shaw, 2013. "¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation," Sustainability, MDPI, vol. 5(5), pages 1-23, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:133:y:2015:i:2:p:169-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.