IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v132y2015i4p615-629.html
   My bibliography  Save this article

Greenhouse gas emissions from the usage of typical e-products by households: a case study of China

Author

Listed:
  • Qingbin Song
  • Jinhui Li

Abstract

The number of electric and electronic products (e-products) owned by Chinese households has multiplied in the past decade. In this study, we analyz the GHG emissions from e-products in Chinese households in order to understand and determine how to mitigate their effects on climate change. The results show that the usage stage of e-products has become an important source of GHG emissions in China, with total GHG emissions of these household e-products reaching about 663 million tons CO 2 eq., accounting for about 8.85 % of all Chinese GHG emissions in 2012. The average GHG emission per household per year in China was 1538 kg CO 2 eq. in 2012, a little higher than that of Norwegian households (1200 kg CO 2 eq.). The electricity mix plays a very important role in GHG emissions, and the 78 % coal-fired power consumption accounted for 99.69 % of the total GHG emissions. Our research also supports the view that GHG emissions from household e-products increased with economic level. To reduce the GHG emissions of household e-products, the development of energy-saving e-products and changes to the electricity mix would be very effective measures. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Qingbin Song & Jinhui Li, 2015. "Greenhouse gas emissions from the usage of typical e-products by households: a case study of China," Climatic Change, Springer, vol. 132(4), pages 615-629, October.
  • Handle: RePEc:spr:climat:v:132:y:2015:i:4:p:615-629
    DOI: 10.1007/s10584-015-1449-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1449-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1449-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anders S. G. Andrae & Mikko Samuli Vaija, 2014. "To Which Degree Does Sector Specific Standardization Make Life Cycle Assessments Comparable?—The Case of Global Warming Potential of Smartphones," Challenges, MDPI, vol. 5(2), pages 1-21, November.
    2. Li, Xin & Ou, Xunmin & Zhang, Xu & Zhang, Qian & Zhang, Xiliang, 2013. "Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010," Energy, Elsevier, vol. 50(C), pages 15-23.
    3. Zhu Liu & Dabo Guan & Douglas Crawford-Brown & Qiang Zhang & Kebin He & Jianguo Liu, 2013. "A low-carbon road map for China," Nature, Nature, vol. 500(7461), pages 143-145, August.
    4. Yang, Jin & Chen, Bin, 2013. "Integrated evaluation of embodied energy, greenhouse gas emission and economic performance of a typical wind farm in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 559-568.
    5. Zeng, Lei & Yu, Yang & Li, Jiayang, 2014. "China’s Promoting Energy-Efficient Products for the Benefit of the People Program in 2012: Results and analysis of the consumer impact study," Applied Energy, Elsevier, vol. 133(C), pages 22-32.
    6. Akorede, M.F. & Hizam, H. & Ab Kadir, M.Z.A. & Aris, I. & Buba, S.D., 2012. "Mitigating the anthropogenic global warming in the electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2747-2761.
    7. Gnansounou, Edgard & Dong, Jun & Bedniaguine, Denis, 2004. "The strategic technology options for mitigating CO2 emissions in power sector: assessment of Shanghai electricity-generating system," Ecological Economics, Elsevier, vol. 50(1-2), pages 117-133, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Hao & Mengyuan Kong, 2022. "Economic effect of the golf simulation industry in Korea: an analysis based on the SVAR model," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    2. Harnpon Phungrassami & Phairat Usubharatana, 2021. "Environmental Problem Shifting Analysis of Pollution Control Units in a Coal-Fired Powerplant Based on Multiple Regression and LCA Methodology," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    3. Song, Qingbin & Li, Jinhui & Duan, Huabo & Yu, Danfeng & Wang, Zhishi, 2017. "Towards to sustainable energy-efficient city: A case study of Macau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 504-514.
    4. Lingyun Mi & Yuhuan Sun & Lijie Qiao & Tianwen Jia & Yang Yang & Tao Lv, 2021. "Analysis of the Cause of Household Carbon Lock-In for Chinese Urban Households," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    5. Shujie Zhao & Qingbin Song & Chao Wang, 2019. "Characterizing the Energy-Saving Behaviors, Attitudes and Awareness of University Students in Macau," Sustainability, MDPI, vol. 11(22), pages 1-11, November.
    6. Zhang, Qi & Gao, Jintong & Wang, Yujie & Wang, Lin & Yu, Zaihai & Song, Dayong, 2019. "Exergy-based analysis combined with LCA for waste heat recovery in coal-fired CHP plants," Energy, Elsevier, vol. 169(C), pages 247-262.
    7. Wang, Jinman & Wang, Ruogu & Zhu, Yucheng & Li, Jiayan, 2018. "Life cycle assessment and environmental cost accounting of coal-fired power generation in China," Energy Policy, Elsevier, vol. 115(C), pages 374-384.
    8. Song, Qingbin & Wang, Zhishi & Li, Jinhui & Duan, Huabo & Yu, Danfeng & Liu, Gang, 2018. "Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2450-2459.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niu, Shuwen & Liu, Yiyue & Ding, Yongxia & Qu, Wei, 2016. "China׳s energy systems transformation and emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 782-795.
    2. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    3. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    4. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    5. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    6. Zhao, Xiaoli & Cai, Qiong & Zhang, Sufang & Luo, Kaiyan, 2017. "The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030," Energy, Elsevier, vol. 120(C), pages 164-178.
    7. Bing Xue & Mario Tobias, 2015. "Sustainability in China: Bridging Global Knowledge with Local Action," Sustainability, MDPI, vol. 7(4), pages 1-7, March.
    8. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    9. Anders S. G. Andrae & Mengjun Xia & Jianli Zhang & Xiaoming Tang, 2016. "Practical Eco-Design and Eco-Innovation of Consumer Electronics—the Case of Mobile Phones," Challenges, MDPI, vol. 7(1), pages 1-19, February.
    10. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    11. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    12. Anders S. G. Andrae & Mikko Samuli Vaija, 2017. "Precision of a Streamlined Life Cycle Assessment Approach Used in Eco-Rating of Mobile Phones," Challenges, MDPI, vol. 8(2), pages 1-24, August.
    13. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    14. Chen, Leyuan & Wang, Yao & Jiang, Yancui & Zhang, Caizhi & Liao, Quan & Li, Jun & Wu, Jihao & Gao, Xin, 2024. "Life cycle assessment of liquid hydrogen fuel for vehicles with different production routes in China," Energy, Elsevier, vol. 299(C).
    15. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    16. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    17. Woojae Kim & Sungmin Ko & Myoungjin Oh & Ie-jung Choi & Jungwoo Shin, 2019. "Is an Incentive Policy for Energy Efficient Products Effective for Air Purifiers? The Case of South Korea," Energies, MDPI, vol. 12(9), pages 1-14, May.
    18. Ji, Shiyu & Chen, Bin, 2016. "Carbon footprint accounting of a typical wind farm in China," Applied Energy, Elsevier, vol. 180(C), pages 416-423.
    19. Siqin Xiong & Junping Ji & Xiaoming Ma, 2019. "Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China," Energies, MDPI, vol. 12(5), pages 1-17, March.
    20. Bin Ye & Jingjing Jiang & Lixin Miao & Peng Yang & Ji Li & Bo Shen, 2015. "Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model," Energies, MDPI, vol. 8(11), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:132:y:2015:i:4:p:615-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.