IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v128y2015i3p229-244.html
   My bibliography  Save this article

Modelling the effects of cross-sectoral water allocation schemes in Europe

Author

Listed:
  • Florian Wimmer
  • Eric Audsley
  • Marcus Malsy
  • Cristina Savin
  • Robert Dunford
  • Paula Harrison
  • Rüdiger Schaldach
  • Martina Flörke

Abstract

Future renewable water resources are likely to be insufficient to meet water demand for human use and minimum environmental flow requirements in many European regions. Hence, fair and equitable water allocation to different water use sectors and environmental needs is important for climate change adaptation in order to reduce negative effects on human well-being and aquatic ecosystems. We applied a system of coupled sectoral metamodels of water availability and water use in the domestic, manufacturing industry, electricity generation, and agricultural sectors to simulate the effects of generic water allocation schemes (WAS) at the European level. The relative performance of WAS in balancing adverse impacts on the water use sectors and aquatic ecosystems was analysed for an ensemble of 16 scenarios for the 2050s, which were built from the combination of four socio-economic scenarios, developed in the CLIMSAVE project, and four climate projections based on IPCC A1. The results indicate that significant physical water shortages may result from climate and socio-economic change in many regions of Europe, particularly in the Mediterranean. In the energy sector, average annual water demand can largely be met even in water allocation schemes that deprioritise the sector. However, prioritisation of agricultural water demand has significant adverse impacts on the domestic and manufacturing industry sectors. Cross-sectoral impacts were found to be lowest if at least one of the domestic and manufacturing sectors is assigned higher priority than agriculture. We conclude that adapting spatial patterns of water-intensive activities to renewable water availability across Europe, such as shifting irrigated agriculture to less water-stressed basins, could be an effective demand-side adaptation measure, and thus a candidate for support through EU policy. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Florian Wimmer & Eric Audsley & Marcus Malsy & Cristina Savin & Robert Dunford & Paula Harrison & Rüdiger Schaldach & Martina Flörke, 2015. "Modelling the effects of cross-sectoral water allocation schemes in Europe," Climatic Change, Springer, vol. 128(3), pages 229-244, February.
  • Handle: RePEc:spr:climat:v:128:y:2015:i:3:p:229-244
    DOI: 10.1007/s10584-014-1161-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1161-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1161-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dinar, Ariel & Rosegrant, Mark W. & Meinzen-Dick, Ruth, 1997. "Water allocation mechanisms : principles and examples," Policy Research Working Paper Series 1779, The World Bank.
    2. Ana Iglesias & Sonia Quiroga & Marta Moneo & Luis Garrote, 2012. "From climate change impacts to the development of adaptation strategies: Challenges for agriculture in Europe," Climatic Change, Springer, vol. 112(1), pages 143-168, May.
    3. Ana Iglesias & Luis Garrote & Francisco Flores & Marta Moneo, 2007. "Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 775-788, May.
    4. Giovanni Sechi & Riccardo Zucca & Paola Zuddas, 2013. "Water Costs Allocation in Complex Systems Using a Cooperative Game Theory Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1781-1796, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto D. Ponce Oliva & Esteban Arias Montevechio & Francisco Fernández Jorquera & Felipe Vásquez-Lavin & Alejandra Stehr, 2021. "Water Use and Climate Stressors in a Multiuser River Basin Setting: Who Benefits from Adaptation?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 897-915, February.
    2. Holman, I.P. & Brown, C & Janes, V & Sandars, D, 2017. "Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis," Agricultural Systems, Elsevier, vol. 151(C), pages 126-135.
    3. Andreas Nicolaidis Lindqvist & Rickard Fornell & Thomas Prade & Linda Tufvesson & Sammar Khalil & Birgit Kopainsky, 2021. "Human-Water Dynamics and their Role for Seasonal Water Scarcity – a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3043-3061, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Iglesias & Berta Sánchez & Luis Garrote & Iván López, 2017. "Towards Adaptation to Climate Change: Water for Rice in the Coastal Wetlands of Doñana, Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 629-653, January.
    2. Iglesias, Ana & Garrote, Luis, 2015. "Adaptation strategies for agricultural water management under climate change in Europe," Agricultural Water Management, Elsevier, vol. 155(C), pages 113-124.
    3. Javier Alarcón & Alberto Garrido & Luis Juana, 2014. "Managing Irrigation Water Shortage: a Comparison Between Five Allocation Rules Based on Crop Benefit Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2315-2329, June.
    4. Ana Iglesias & Luis Garrote & Sonia Quiroga & Marta Moneo, 2012. "A regional comparison of the effects of climate change on agricultural crops in Europe," Climatic Change, Springer, vol. 112(1), pages 29-46, May.
    5. Wreford, Anita & Topp, Cairistiona F.E., 2020. "Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom," Agricultural Systems, Elsevier, vol. 178(C).
    6. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    7. Giuseppe Rossi & Enrica Caporali & Luis Garrote, 2012. "Definition of Risk Indicators for Reservoirs Management Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 981-996, March.
    8. Nadjib Drouiche & Noreddine Ghaffour & Mohamed Naceur & Hacene Mahmoudi & Tarik Ouslimane, 2011. "Reasons for the Fast Growing Seawater Desalination Capacity in Algeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2743-2754, September.
    9. Wan-Jiun Chen & Jihn-Fa Jan & Chih-Hsin Chung & Shyue-Cherng Liaw, 2023. "Agriculture Risks and Opportunities in a Climate-Vulnerable Watershed in Northeastern Taiwan—The Opinions of Leisure Agriculture Operators," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    10. Catarina Esgalhado & Maria Helena Guimaraes, 2020. "Unveiling Contrasting Preferred Trajectories of Local Development in Southeast Portugal," Land, MDPI, vol. 9(3), pages 1-15, March.
    11. Thomas Vendryes, 2014. "Peasants Against Private Property Rights: A Review Of The Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 971-995, December.
    12. Kiprop, Jonah Kipsaat, 2015. "An Evaluation Of Farmers Willingness To Pay For Irrigation Water In Kerio Valley Basin Kenya," Research Theses 265580, Collaborative Masters Program in Agricultural and Applied Economics.
    13. Miria Lange & Ann Winstanley & David Wood, 2008. "Drivers and barriers to water transfer in a New Zealand irrigation scheme," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 51(3), pages 381-397.
    14. Gomez-Limon, Jose A. & Riesgo, Laura, 2004. "Irrigation water pricing: differential impacts on irrigated farms," Agricultural Economics, Blackwell, vol. 31(1), pages 47-66, July.
    15. Mehran Homayounfar & Sai Lai & Mehdi Zommorodian & Amin Oroji & Arman Ganji & Sara Kaviani, 2015. "Developing a Non-Discrete Dynamic Game Model and Corresponding Monthly Collocation Solution Considering Variability in Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2599-2618, June.
    16. Francesco Prota, 2002. "Water Resources And Water Policies," Working Papers 8_2002, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    17. Nektarios N. Kourgialas & Chrysoula Ntislidou & Eleana Kazila & Agathos Filintas & Catherina Voreadou, 2024. "An Innovative GIS-Based Policy Approach to Stream Water Quality and Ecological Risk Assessment in Mediterranean Regions: The Case of Crete, Greece," Land, MDPI, vol. 13(11), pages 1-25, October.
    18. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    19. J. Maestre-Valero & D. Martínez-Granados & V. Martínez-Alvarez & J. Calatrava, 2013. "Socio-Economic Impact of Evaporation Losses from Reservoirs Under Past, Current and Future Water Availability Scenarios in the Semi-Arid Segura Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1411-1426, March.
    20. G. Yamout & M. El-Fadel, 2005. "An Optimization Approach for Multi-Sectoral Water Supply Management in the Greater Beirut Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 791-812, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:128:y:2015:i:3:p:229-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.