IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v122y2014i4p595-608.html
   My bibliography  Save this article

Detection of urbanization signals in extreme winter minimum temperature changes over Northern China

Author

Listed:
  • Qingxiang Li
  • Jiayou Huang
  • Zhihong Jiang
  • Liming Zhou
  • Peng Chu
  • Kaixi Hu

Abstract

Although previous studies show that urbanization contributes to less than 10 % of the long-term regional total warming trend of mean surface air temperature in northeast China (Li et al. 2010 ), the urban heat island (UHI) impact on extreme temperatures could be more significant. This paper examines the urbanization impact on extreme winter minimum temperatures from 33 stations in North China during the period of 1957–2010. We use the Generalized Extreme Value (GEV) distribution to analyze the distribution of extreme minimum temperatures and the long-term variations of the three distributional characteristics parameters. Results suggest that among the three distribution parameters, the position parameter is the most representative in terms of the long-term extreme minimum temperature change. A new classification method based on the intercommunity (factors analysis method) of the temperature change is developed to detect the urbanization effect on winter extreme minimum temperatures in different cities. During the period of rapid urbanization (after 1980), the magnitude of variations of the three distribution parameters for the urban station group is larger than that for the reference station group, indicating a higher chance of occurrence of warmer weather and a larger fluctuation of temperatures. Among different types of cities, the three parameters of extreme minimum temperature distribution of the urban station group are, without exception, higher than those of the reference station group. The urbanization of different types of cities all show a warming effect, with small-size cities have the most evident effects on extreme minimum temperatures. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Qingxiang Li & Jiayou Huang & Zhihong Jiang & Liming Zhou & Peng Chu & Kaixi Hu, 2014. "Detection of urbanization signals in extreme winter minimum temperature changes over Northern China," Climatic Change, Springer, vol. 122(4), pages 595-608, February.
  • Handle: RePEc:spr:climat:v:122:y:2014:i:4:p:595-608
    DOI: 10.1007/s10584-013-1013-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-1013-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-1013-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. David E. Parker, 2004. "Large-scale warming is not urban," Nature, Nature, vol. 432(7015), pages 290-290, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waleed Abbas & Islam Hamdi, 2022. "Satellite-Based Discrimination of Urban Dynamics-Induced Local Bias from Day/Night Temperature Trends across the Nile Delta, Egypt: A Basis for Climate Change Impacts Assessment," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    2. Junliang Qiu & Xiankun Yang & Bowen Cao & Zhilong Chen & Yuxuan Li, 2020. "Effects of Urbanization on Regional Extreme-Temperature Changes in China, 1960–2016," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    3. Pengke Shen & Shuqing Zhao, 2021. "1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes," Climatic Change, Springer, vol. 164(3), pages 1-19, February.
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    6. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    7. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    8. Lina Eklund & Abdulhakim Abdi & Mine Islar, 2017. "From Producers to Consumers: The Challenges and Opportunities of Agricultural Development in Iraqi Kurdistan," Land, MDPI, vol. 6(2), pages 1-14, June.
    9. Xiaolong Jin & Penghui Jiang & Haoyang Du & Dengshuai Chen & Manchun Li, 2021. "Response of local temperature variation to land cover and land use intensity changes in China over the last 30 years," Climatic Change, Springer, vol. 164(3), pages 1-20, February.
    10. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    11. Kai Jin & Fei Wang & Deliang Chen & Qiao Jiao & Lei Xia & Luuk Fleskens & Xingmin Mu, 2015. "Assessment of urban effect on observed warming trends during 1955–2012 over China: a case of 45 cities," Climatic Change, Springer, vol. 132(4), pages 631-643, October.
    12. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    13. Hongyan Cai & Xinliang Xu, 2017. "Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    14. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    15. Guibor Camargo & Andrés Miguel Sampayo & Andrés Peña Galindo & Francisco J Escobedo & Fernando Carriazo & Alejandro Feged-Rivadeneira, 2020. "Exploring the dynamics of migration, armed conflict, urbanization, and anthropogenic change in Colombia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    16. Sridhara Nayak, 2021. "Land use and land cover change and their impact on temperature over central India," Letters in Spatial and Resource Sciences, Springer, vol. 14(2), pages 129-140, August.
    17. Shukui Tan & Haipeng Song & Ghulam Akhmat & Javeed Hussain, 2014. "Governing Harmonious Human Engagement with the Spatial Capital," Sustainability, MDPI, vol. 6(3), pages 1-19, March.
    18. Dana Habeeb & Jason Vargo & Brian Stone, 2015. "Rising heat wave trends in large US cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1651-1665, April.
    19. Max Meulemann, 2017. "An Empirical Assessment Of Components Of Climate Architectures," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-36, November.
    20. Weishou Tian & Lian Zong & Yakun Dong & Duanyang Liu & Yuanjian Yang, 2023. "Long-Term Variations in Warm and Cold Events in Nanjing, China: Roles of Synoptic Weather Patterns and Urbanization," Land, MDPI, vol. 12(1), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:122:y:2014:i:4:p:595-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.