IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v33y2025i1d10.1007_s10100-024-00922-3.html
   My bibliography  Save this article

Location and capacity allocation for emergency contact points in large-scale power outages

Author

Listed:
  • Christian Truden

    (University of Klagenfurt)

  • Christian Wankmüller

    (University of Klagenfurt)

  • Dominik Zehetner

    (University of Klagenfurt)

  • Margaretha Gansterer

    (University of Klagenfurt)

Abstract

Nowadays, industry and individuals alike are highly dependent on a reliable power supply. A large-scale power outage, commonly known as a “blackout” is caused by natural disasters, cyber attacks, technical failure, or human errors, and can lead to a variety of severe consequences. The far-reaching dynamics of blackouts can even result in the collapse of critical public service infrastructure reliant on electricity (e.g., communication, water supply, medical services, public safety). Particularly, the loss of information and communication infrastructure essential to reporting medical emergencies, and the collapse of the drinking water supply are two critical stressors for the population to cope with. One attempt to tackle this situation is to install temporary emergency contact points (ECPs) into existing infrastructure. These can be approached by the population to communicate with medical personnel and to receive drinking water. Different types of professional personnel, which is a limited resource, are required to run such ECPs. Our study introduces this tactical decision problem. We formulate it as an integer linear program for the optimal spatial allocation of ECPs, such that multiple types of human resources that are required for operating such locations can be efficiently assigned. A comprehensive numerical study, based on data of the City of Vienna, demonstrates how to reduce the walking distance of inhabitants while increasing the efficiency of resource allocation. Matrix pruning based on an enforced limit of the walking distances together with a decomposition approach is utilized to solve the considered instances.

Suggested Citation

  • Christian Truden & Christian Wankmüller & Dominik Zehetner & Margaretha Gansterer, 2025. "Location and capacity allocation for emergency contact points in large-scale power outages," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 33(1), pages 241-276, March.
  • Handle: RePEc:spr:cejnor:v:33:y:2025:i:1:d:10.1007_s10100-024-00922-3
    DOI: 10.1007/s10100-024-00922-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-024-00922-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-024-00922-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    2. Lei, Ting L. & Church, Richard L., 2015. "On the unified dispersion problem: Efficient formulations and exact algorithms," European Journal of Operational Research, Elsevier, vol. 241(3), pages 622-630.
    3. Paul, Jomon Aliyas & MacDonald, Leo, 2016. "Location and capacity allocations decisions to mitigate the impacts of unexpected disasters," European Journal of Operational Research, Elsevier, vol. 251(1), pages 252-263.
    4. Muhammad Salman Habib & Biswajit Sarkar, 2017. "An Integrated Location-Allocation Model for Temporary Disaster Debris Management under an Uncertain Environment," Sustainability, MDPI, vol. 9(5), pages 1-26, April.
    5. Jian Wang & Danqing Shen & Mingzhu Yu, 2020. "Multiobjective Optimization on Hierarchical Refugee Evacuation and Resource Allocation for Disaster Management," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, August.
    6. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.
    7. Linlin Zhang & Na Cui, 2021. "Pre-Positioning Facility Location and Resource Allocation in Humanitarian Relief Operations Considering Deprivation Costs," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    8. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    9. N Görmez & M Köksalan & F S Salman, 2011. "Locating disaster response facilities in Istanbul," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1239-1252, July.
    10. Aakil M. Caunhye & Xiaofeng Nie, 2018. "A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events," Transportation Science, INFORMS, vol. 52(2), pages 437-453, March.
    11. Doan, Xuan Vinh & Shaw, Duncan, 2019. "Resource allocation when planning for simultaneous disasters," European Journal of Operational Research, Elsevier, vol. 274(2), pages 687-709.
    12. Shaoqing Geng & Hanping Hou & Zhou Zhou, 2021. "A Hybrid Approach of VIKOR and Bi-Objective Decision Model for Emergency Shelter Location–Allocation to Respond to Earthquakes," Mathematics, MDPI, vol. 9(16), pages 1-29, August.
    13. Yonghong Liu & Yucheng Li & De Huang, 2020. "A Multiobjective Optimization Model for Continuous Allocation of Emergency Rescue Materials," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-15, July.
    14. Klaus-Dieter Rest & Patrick Hirsch, 2022. "Insights and decision support for home health care services in times of disasters," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 133-157, March.
    15. Ying Lu & Shuqi Sun, 2020. "Scenario-Based Allocation of Emergency Resources in Metro Emergencies: A Model Development and a Case Study of Nanjing Metro," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    2. Shaoqing Geng & Yu Gong & Hanping Hou & Jianliang Yang & Bhakti Stephan Onggo, 2024. "Resource management in disaster relief: a bibliometric and content-analysis-based literature review," Annals of Operations Research, Springer, vol. 343(1), pages 263-292, December.
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    5. Yanyan Wang & Baiqing Sun, 2022. "Multiperiod optimal emergency material allocation considering road network damage and risk under uncertain conditions," Operational Research, Springer, vol. 22(3), pages 2173-2208, July.
    6. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    7. Sperling, Martina & Schryen, Guido, 2022. "Decision support for disaster relief: Coordinating spontaneous volunteers," European Journal of Operational Research, Elsevier, vol. 299(2), pages 690-705.
    8. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    9. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    10. Yang, Wenjie & Caunhye, Aakil M. & Zhuo, Maolin & Wang, Qingyi, 2024. "Integrated planning of emergency supply pre-positioning and victim evacuation," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    11. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    12. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    13. Jing Liu & Ruilin Ouyang & Chun-An Chou & Jacqueline Griffin, 2023. "An Analytical Approach for Dispatch Operations of Emergency Medical Services: A Case Study of COVID-19," SN Operations Research Forum, Springer, vol. 4(2), pages 1-36, June.
    14. Afshin Kamyabniya & Antoine Sauré & F. Sibel Salman & Noureddine Bénichou & Jonathan Patrick, 2024. "Optimization models for disaster response operations: a literature review," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 737-783, September.
    15. Sun, Huiping & Li, Yuchen & Zhang, Jianghua, 2022. "Collaboration-based reliable optimal casualty evacuation network design for large-scale emergency preparedness," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    16. Sharbaf, Maedeh & Bélanger, Valérie & Cherkesly, Marilène & Rancourt, Marie-Ève & Toglia, Giovanni Michele, 2025. "Risk-based shelter network design in flood-prone areas: An application to Haiti," Omega, Elsevier, vol. 131(C).
    17. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.
    18. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.
    19. Hasti Seraji & Reza Tavakkoli-Moghaddam & Sobhan Asian & Harpreet Kaur, 2022. "An integrative location-allocation model for humanitarian logistics with distributive injustice and dissatisfaction under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 211-257, December.
    20. Camur, Mustafa C. & Sharkey, Thomas C. & Dorsey, Clare & Grabowski, Martha R. & Wallace, William A., 2021. "Optimizing the response for Arctic mass rescue events," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:33:y:2025:i:1:d:10.1007_s10100-024-00922-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.