Author
Listed:
- Christian Truden
(University of Klagenfurt)
- Christian Wankmüller
(University of Klagenfurt)
- Dominik Zehetner
(University of Klagenfurt)
- Margaretha Gansterer
(University of Klagenfurt)
Abstract
Nowadays, industry and individuals alike are highly dependent on a reliable power supply. A large-scale power outage, commonly known as a “blackout” is caused by natural disasters, cyber attacks, technical failure, or human errors, and can lead to a variety of severe consequences. The far-reaching dynamics of blackouts can even result in the collapse of critical public service infrastructure reliant on electricity (e.g., communication, water supply, medical services, public safety). Particularly, the loss of information and communication infrastructure essential to reporting medical emergencies, and the collapse of the drinking water supply are two critical stressors for the population to cope with. One attempt to tackle this situation is to install temporary emergency contact points (ECPs) into existing infrastructure. These can be approached by the population to communicate with medical personnel and to receive drinking water. Different types of professional personnel, which is a limited resource, are required to run such ECPs. Our study introduces this tactical decision problem. We formulate it as an integer linear program for the optimal spatial allocation of ECPs, such that multiple types of human resources that are required for operating such locations can be efficiently assigned. A comprehensive numerical study, based on data of the City of Vienna, demonstrates how to reduce the walking distance of inhabitants while increasing the efficiency of resource allocation. Matrix pruning based on an enforced limit of the walking distances together with a decomposition approach is utilized to solve the considered instances.
Suggested Citation
Christian Truden & Christian Wankmüller & Dominik Zehetner & Margaretha Gansterer, 2025.
"Location and capacity allocation for emergency contact points in large-scale power outages,"
Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 33(1), pages 241-276, March.
Handle:
RePEc:spr:cejnor:v:33:y:2025:i:1:d:10.1007_s10100-024-00922-3
DOI: 10.1007/s10100-024-00922-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:33:y:2025:i:1:d:10.1007_s10100-024-00922-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.