IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8395714.html
   My bibliography  Save this article

Multiobjective Optimization on Hierarchical Refugee Evacuation and Resource Allocation for Disaster Management

Author

Listed:
  • Jian Wang
  • Danqing Shen
  • Mingzhu Yu

Abstract

This paper studies a location-allocation problem to determine the selection of emergency shelters, medical centers, and distribution centers after the disaster. The evacuation of refugees and allocation of relief resources are also considered. A mixed-integer nonlinear multiobjective programming model is proposed to characterize the problem. The hierarchical demand of different refugees and the limitations of relief resources are considered in the model. We employ a combination of the simulated annealing (SA) algorithm and the particle swarm optimization (PSO) algorithm method to solve the complex model. To optimize the result of our proposed algorithm, we absorb the group search, crossover, and mutation operator of GA into SA. We conduct a case study in a district of Beijing in China to validate the proposed methodology. Some computational experiments are conducted to analyze the impact of different factors, such as the target weight setting, selection of candidate shelters, and quantity of relief resources.

Suggested Citation

  • Jian Wang & Danqing Shen & Mingzhu Yu, 2020. "Multiobjective Optimization on Hierarchical Refugee Evacuation and Resource Allocation for Disaster Management," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-18, August.
  • Handle: RePEc:hin:jnlmpe:8395714
    DOI: 10.1155/2020/8395714
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8395714.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8395714.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8395714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengjie Long & Dezhi Zhang & Shuangyan Li & Shuanglin Li, 2023. "Two-Stage Multi-Objective Stochastic Model on Patient Transfer and Relief Distribution in Lockdown Area of COVID-19," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    2. Yanyan Wang & Baiqing Sun, 2022. "Multiperiod optimal emergency material allocation considering road network damage and risk under uncertain conditions," Operational Research, Springer, vol. 22(3), pages 2173-2208, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8395714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.