IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v27y2019i4d10.1007_s10100-017-0510-y.html
   My bibliography  Save this article

An integrated data envelopment analysis and mixed integer non-linear programming model for linearizing the common set of weights

Author

Listed:
  • Mehdi Toloo

    (VŠB-Technical University of Ostrava)

  • Madjid Tavana

    (La Salle University
    University of Paderborn)

  • Francisco J. Santos-Arteaga

    (Free University of Bolzano)

Abstract

The problem of ranking efficient decision making units (DMUs) is of interest from both theoretical and practical points of view. In this paper, we propose an integrated data envelopment analysis and mixed integer non-linear programming (MINLP) model to find the most efficient DMU using a common set of weights. We linearize the MINLP model to an equivalent mixed integer linear programming (MILP) model by eliminating the non-linear constraints in which the products of variables are incorporated. The formulated MILP model is simpler and computationally more efficient. In addition, we introduce a model for finding the value of epsilon, since the improper choice of the non-Archimedean epsilon may result in infeasible conditions. We use a real-life facility layout problem to demonstrate the applicability and exhibit the efficacy of the proposed model.

Suggested Citation

  • Mehdi Toloo & Madjid Tavana & Francisco J. Santos-Arteaga, 2019. "An integrated data envelopment analysis and mixed integer non-linear programming model for linearizing the common set of weights," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 887-904, December.
  • Handle: RePEc:spr:cejnor:v:27:y:2019:i:4:d:10.1007_s10100-017-0510-y
    DOI: 10.1007/s10100-017-0510-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-017-0510-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-017-0510-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Li, Xiao-Bai & Reeves, Gary R., 1999. "A multiple criteria approach to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 115(3), pages 507-517, June.
    3. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    4. Ebrahimnejad, Ali & Tavana, Madjid & Santos-Arteaga, Francisco J., 2016. "An integrated data envelopment analysis and simulation method for group consensus ranking," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 1-17.
    5. Ramilan, Thiagarajah & Scrimgeour, Frank & Marsh, Dan, 2011. "Analysis of environmental and economic efficiency using a farm population micro-simulation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1344-1352.
    6. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, April.
    7. Mohammad Pakkar, 2015. "An integrated approach based on DEA and AHP," Computational Management Science, Springer, vol. 12(1), pages 153-169, January.
    8. Jie Wu & Junfei Chu & Qingyuan Zhu & Yongjun Li & Liang Liang, 2016. "Determining common weights in data envelopment analysis based on the satisfaction degree," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(12), pages 1446-1458, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siyu Xu & Yufei Wang & Xiao Feng, 2020. "Plant Layout Optimization for Chemical Industry Considering Inner Frame Structure Design," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    2. Balak, Sima & Behzadi, Mohammad Hassan & Nazari, Ali, 2021. "Stochastic copula-DEA model based on the dependence structure of stochastic variables: An application to twenty bank branches," Economic Analysis and Policy, Elsevier, vol. 72(C), pages 326-341.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojtaba Ghiyasi & Jens Leth Hougaard, 2014. "Ranking Production Units According to Marginal Efficiency Contribution," MSAP Working Paper Series 04_2014, University of Copenhagen, Department of Food and Resource Economics.
    2. Jorge Guardiola & Andrés J. Picazo-Tadeo, 2013. "Weighting life domains with Data Envelopment Analysis," Working Papers 1311, Department of Applied Economics II, Universidad de Valencia.
    3. C Kao & H-T Hung, 2005. "Data envelopment analysis with common weights: the compromise solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(10), pages 1196-1203, October.
    4. Dariush Khezrimotlagh & Wade D. Cook & Joe Zhu, 2021. "Number of performance measures versus number of decision making units in DEA," Annals of Operations Research, Springer, vol. 303(1), pages 529-562, August.
    5. Ghasemi, Mohammad Reza & Ignatius, Joshua & Rezaee, Babak, 2019. "Improving discriminating power in data envelopment models based on deviation variables framework," European Journal of Operational Research, Elsevier, vol. 278(2), pages 442-447.
    6. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda & Gupta, Shubham, 2021. "Three decades of Indian power-sector reform:A critical assessment," Utilities Policy, Elsevier, vol. 68(C).
    7. Jorge Guardiola & Andrés Picazo-Tadeo, 2014. "Building Weighted-Domain Composite Indices of Life Satisfaction with Data Envelopment Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 117(1), pages 257-274, May.
    8. Fang, Tao & Fang, Debin & Yu, Bolin, 2022. "Carbon emission efficiency of thermal power generation in China: Empirical evidence from the micro-perspective of power plants," Energy Policy, Elsevier, vol. 165(C).
    9. Jesús Peiró-Palomino & Andrés J. Picazo-Tadeo, 2018. "OECD: One or Many? Ranking Countries with a Composite Well-Being Indicator," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(3), pages 847-869, October.
    10. Liu, John S. & Lu, Wen-Min, 2010. "DEA and ranking with the network-based approach: a case of R&D performance," Omega, Elsevier, vol. 38(6), pages 453-464, December.
    11. Aneirson Francisco Silva & Fernando Augusto S. Marins & Erica Ximenes Dias, 2020. "Improving the discrimination power with a new multi-criteria data envelopment model," Annals of Operations Research, Springer, vol. 287(1), pages 127-159, April.
    12. Soltanifar, Mehdi & Shahghobadi, Saeid, 2013. "Selecting a benevolent secondary goal model in data envelopment analysis cross-efficiency evaluation by a voting model," Socio-Economic Planning Sciences, Elsevier, vol. 47(1), pages 65-74.
    13. Lee, Seonghee & Lee, Hakyeon, 2015. "Measuring and comparing the R&D performance of government research institutes: A bottom-up data envelopment analysis approach," Journal of Informetrics, Elsevier, vol. 9(4), pages 942-953.
    14. Svetlana Ratner & Andrey Lychev & Aleksei Rozhnov & Igor Lobanov, 2021. "Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    15. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    16. Kang, Hee Jay & Kim, Changhee & Choi, Kanghwa, 2024. "Combining bootstrap data envelopment analysis with social networks for rank discrimination and suitable potential benchmarks," European Journal of Operational Research, Elsevier, vol. 312(1), pages 283-297.
    17. Simon de Blas, Clara & Simon Martin, Jose & Gomez Gonzalez, Daniel, 2018. "Combined social networks and data envelopment analysis for ranking," European Journal of Operational Research, Elsevier, vol. 266(3), pages 990-999.
    18. Li, Yongjun & Xie, Jianhui & Wang, Meiqiang & Liang, Liang, 2016. "Super efficiency evaluation using a common platform on a cooperative game," European Journal of Operational Research, Elsevier, vol. 255(3), pages 884-892.
    19. Sinuany-Stern, Zilla, 2023. "Foundations of operations research: From linear programming to data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1069-1080.
    20. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:27:y:2019:i:4:d:10.1007_s10100-017-0510-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.