IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v27y2019i2d10.1007_s10100-018-0551-x.html
   My bibliography  Save this article

An EDA for the 2D knapsack problem with guillotine constraint

Author

Listed:
  • István Borgulya

    (University of Pecs)

Abstract

In this paper we present an evolutionary heuristic for the 2D knapsack problem with guillotine constraint. In this problem we have a set of rectangles and there is a profit for each rectangle. The goal is to cut a subset of rectangles without overlap from a rectangular strip of width W and height H, so that the total profit of the rectangles from the subset is maximal. The sides of the rectangles are parallel to the strip sides and every cutting is restricted by orthogonal guillotine-cuts. A guillotine-cut is parallel to the horizontal or vertical side of the strip and cuts the strip into two separated rectangular strips. Our algorithm is an estimation of distribution algorithm (EDA), where recombination and mutation evolutionary operators are replaced by probability estimation and sampling techniques. Our EDA works with two probability models. It improves the quality of the solutions with local search procedures. The algorithm was tested on well-known benchmark instances from the literature.

Suggested Citation

  • István Borgulya, 2019. "An EDA for the 2D knapsack problem with guillotine constraint," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 329-356, June.
  • Handle: RePEc:spr:cejnor:v:27:y:2019:i:2:d:10.1007_s10100-018-0551-x
    DOI: 10.1007/s10100-018-0551-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-018-0551-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-018-0551-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. Andreas Bortfeldt & Sabine Jungmann, 2012. "A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint," Annals of Operations Research, Springer, vol. 196(1), pages 53-71, July.
    3. R Alvarez-Valdes & F Parreño & J M Tamarit, 2005. "A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 414-425, April.
    4. Sándor P. Fekete & Jörg Schepers & Jan C. van der Veen, 2007. "An Exact Algorithm for Higher-Dimensional Orthogonal Packing," Operations Research, INFORMS, vol. 55(3), pages 569-587, June.
    5. Arenales, Marcos & Morabito, Reinaldo, 1995. "An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 599-617, August.
    6. Hadjiconstantinou, Eleni & Christofides, Nicos, 1995. "An exact algorithm for general, orthogonal, two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 83(1), pages 39-56, May.
    7. P. Y. Wang, 1983. "Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems," Operations Research, INFORMS, vol. 31(3), pages 573-586, June.
    8. Bortfeldt, Andreas, 2006. "A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces," European Journal of Operational Research, Elsevier, vol. 172(3), pages 814-837, August.
    9. Oliveira, JoseFernando & Ferreira, JoseSoeiro, 1990. "An improved version of Wang's algorithm for two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 256-266, January.
    10. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    11. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    12. Wu, Yu-Liang & Huang, Wenqi & Lau, Siu-chung & Wong, C. K. & Young, Gilbert H., 2002. "An effective quasi-human based heuristic for solving the rectangle packing problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 341-358, September.
    13. K. V. Viswanathan & A. Bagchi, 1993. "Best-First Search Methods for Constrained Two-Dimensional Cutting Stock Problems," Operations Research, INFORMS, vol. 41(4), pages 768-776, August.
    14. Morabito, Reinaldo & Arenales, Marcos N., 1996. "Staged and constrained two-dimensional guillotine cutting problems: An AND/OR-graph approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 548-560, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Istvan Borgulya, 2021. "A hybrid evolutionary algorithm for the offline Bin Packing Problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 425-445, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    2. Alvarez-Valdes, R. & Parreno, F. & Tamarit, J.M., 2007. "A tabu search algorithm for a two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1167-1182, December.
    3. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    4. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    5. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    6. R Alvarez-Valdes & F Parreño & J M Tamarit, 2005. "A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 414-425, April.
    7. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    8. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    9. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    10. Wei, Lijun & Lim, Andrew, 2015. "A bidirectional building approach for the 2D constrained guillotine knapsack packing problem," European Journal of Operational Research, Elsevier, vol. 242(1), pages 63-71.
    11. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    12. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.
    13. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    14. Sándor P. Fekete & Jörg Schepers, 2004. "A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 353-368, May.
    15. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    16. Gonçalves, José Fernando & Wäscher, Gerhard, 2020. "A MIP model and a biased random-key genetic algorithm based approach for a two-dimensional cutting problem with defects," European Journal of Operational Research, Elsevier, vol. 286(3), pages 867-882.
    17. Demiröz, Barış Evrim & Altınel, İ. Kuban & Akarun, Lale, 2019. "Rectangle blanket problem: Binary integer linear programming formulation and solution algorithms," European Journal of Operational Research, Elsevier, vol. 277(1), pages 62-83.
    18. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    19. Lu, Hao-Chun & Huang, Yao-Huei, 2015. "An efficient genetic algorithm with a corner space algorithm for a cutting stock problem in the TFT-LCD industry," European Journal of Operational Research, Elsevier, vol. 246(1), pages 51-65.
    20. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:27:y:2019:i:2:d:10.1007_s10100-018-0551-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.