IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v246y2015i1p51-65.html
   My bibliography  Save this article

An efficient genetic algorithm with a corner space algorithm for a cutting stock problem in the TFT-LCD industry

Author

Listed:
  • Lu, Hao-Chun
  • Huang, Yao-Huei

Abstract

In this study, we investigate a two-dimensional cutting stock problem in the thin film transistor liquid crystal display industry. Given the lack of an efficient and effective mixed production method that can produce various sizes of liquid crystal display panels from a glass substrate sheet, thin film transistor liquid crystal display manufacturers have relied on the batch production method, which only produces one size of liquid crystal display panel from a single substrate. However, batch production is not an effective or flexible strategy because it increases production costs by using an excessive number of glass substrate sheets and causes wastage costs from unused liquid crystal display panels. A number of mixed production approaches or algorithms have been proposed. However, these approaches cannot solve industrial-scale two-dimensional cutting stock problem efficiently because of its computational complexity. We propose an efficient and effective genetic algorithm that incorporates a novel placement procedure, called a corner space algorithm, and a mixed integer programming model to resolve the problem. The key objectives are to reduce the total production costs and to satisfy the requirements of customers. Our computational results show that, in terms of solution quality and computation time, the proposed method significantly outperforms the existing approaches.

Suggested Citation

  • Lu, Hao-Chun & Huang, Yao-Huei, 2015. "An efficient genetic algorithm with a corner space algorithm for a cutting stock problem in the TFT-LCD industry," European Journal of Operational Research, Elsevier, vol. 246(1), pages 51-65.
  • Handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:51-65
    DOI: 10.1016/j.ejor.2015.04.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715003379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.04.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hinxman, A. I., 1980. "The trim-loss and assortment problems: A survey," European Journal of Operational Research, Elsevier, vol. 5(1), pages 8-18, July.
    2. Wagner, Bret J., 1999. "A genetic algorithm solution for one-dimensional bundled stock cutting," European Journal of Operational Research, Elsevier, vol. 117(2), pages 368-381, September.
    3. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    4. Jakobs, Stefan, 1996. "On genetic algorithms for the packing of polygons," European Journal of Operational Research, Elsevier, vol. 88(1), pages 165-181, January.
    5. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    6. Umetani, Shunji & Yagiura, Mutsunori & Ibaraki, Toshihide, 2003. "One-dimensional cutting stock problem to minimize the number of different patterns," European Journal of Operational Research, Elsevier, vol. 146(2), pages 388-402, April.
    7. Pisinger, David, 2002. "Heuristics for the container loading problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 382-392, September.
    8. P. Y. Wang, 1983. "Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems," Operations Research, INFORMS, vol. 31(3), pages 573-586, June.
    9. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    10. Bortfeldt, Andreas, 2006. "A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces," European Journal of Operational Research, Elsevier, vol. 172(3), pages 814-837, August.
    11. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    12. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    13. Liu, Dequan & Teng, Hongfei, 1999. "An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles," European Journal of Operational Research, Elsevier, vol. 112(2), pages 413-420, January.
    14. Chen, C. S. & Lee, S. M. & Shen, Q. S., 1995. "An analytical model for the container loading problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 68-76, January.
    15. E. K. Burke & G. Kendall & G. Whitwell, 2004. "A New Placement Heuristic for the Orthogonal Stock-Cutting Problem," Operations Research, INFORMS, vol. 52(4), pages 655-671, August.
    16. J. E. Beasley, 1985. "An Exact Two-Dimensional Non-Guillotine Cutting Tree Search Procedure," Operations Research, INFORMS, vol. 33(1), pages 49-64, February.
    17. Wu, Yu-Liang & Huang, Wenqi & Lau, Siu-chung & Wong, C. K. & Young, Gilbert H., 2002. "An effective quasi-human based heuristic for solving the rectangle packing problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 341-358, September.
    18. K. V. Viswanathan & A. Bagchi, 1993. "Best-First Search Methods for Constrained Two-Dimensional Cutting Stock Problems," Operations Research, INFORMS, vol. 41(4), pages 768-776, August.
    19. Kroger, Berthold, 1995. "Guillotineable bin packing: A genetic approach," European Journal of Operational Research, Elsevier, vol. 84(3), pages 645-661, August.
    20. Leung, T. W. & Chan, Chi Kin & Troutt, Marvin D., 2003. "Application of a mixed simulated annealing-genetic algorithm heuristic for the two-dimensional orthogonal packing problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 530-542, March.
    21. Huang, Wenqi & He, Kun, 2009. "A caving degree approach for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 93-101, July.
    22. Wang, Zhoujing & Li, Kevin W. & Levy, Jason K., 2008. "A heuristic for the container loading problem: A tertiary-tree-based dynamic space decomposition approach," European Journal of Operational Research, Elsevier, vol. 191(1), pages 86-99, November.
    23. Zeger Degraeve & Linus Schrage, 1999. "Optimal Integer Solutions to Industrial Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 406-419, November.
    24. David Pisinger & Mikkel Sigurd, 2007. "Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 36-51, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Haowei & Xie, Junwei & Ge, Jiaang & Zhang, Zhaojian & Zong, Binfeng, 2019. "A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar," European Journal of Operational Research, Elsevier, vol. 272(3), pages 868-878.
    2. Jie Fang & Yunqing Rao & Qiang Luo & Jiatai Xu, 2023. "Solving One-Dimensional Cutting Stock Problems with the Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    2. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    3. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    4. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    5. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    6. Sławomir Bąk & Jacek Błażewicz & Grzegorz Pawlak & Maciej Płaza & Edmund K. Burke & Graham Kendall, 2011. "A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 15-25, February.
    7. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    8. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    9. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    10. Wu, Yu-Liang & Huang, Wenqi & Lau, Siu-chung & Wong, C. K. & Young, Gilbert H., 2002. "An effective quasi-human based heuristic for solving the rectangle packing problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 341-358, September.
    11. Xinfang (Jocelyn) Wang & Jeffrey D. Camm & David J. Curry, 2009. "A Branch-and-Price Approach to the Share-of-Choice Product Line Design Problem," Management Science, INFORMS, vol. 55(10), pages 1718-1728, October.
    12. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    13. Krzysztof C. Kiwiel, 2010. "An Inexact Bundle Approach to Cutting-Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 131-143, February.
    14. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    15. Constantine N. Goulimis, 2001. "Technical Note on “Optimal Integer Solutions to Industrial Cutting Stock Problems” by Degraeve and Schrage," INFORMS Journal on Computing, INFORMS, vol. 13(4), pages 360-360, November.
    16. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    17. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    18. Peeters, Marc & Degraeve, Zeger, 2006. "Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem," European Journal of Operational Research, Elsevier, vol. 170(2), pages 416-439, April.
    19. Syam Menon & Ali Amiri, 2004. "Scheduling Banner Advertisements on the Web," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 95-105, February.
    20. Önder Aşık & Ender Özcan, 2009. "Bidirectional best-fit heuristic for orthogonal rectangular strip packing," Annals of Operations Research, Springer, vol. 172(1), pages 405-427, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:51-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.