IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v25y2017i4d10.1007_s10100-016-0453-8.html
   My bibliography  Save this article

Truck routing and scheduling

Author

Listed:
  • Csongor Gy. Csehi

    (Budapest University of Technology and Economics)

  • Márk Farkas

    (Nexogen)

Abstract

The problem is part of a complex software solution for truck itinerary construction for one of the largest public road transportation companies in the EU. In practice a minor improvement on the operational cost per tour can decide whether a freight services company is profitable or not. Thus the optimization of routes has key importance in the operation of such companies. Given an initial location and an asset state one must be able to calculate a cost optimal itinerary containing all Point of Interests. Such an itinerary is an executable plan which exactly specifies the location and activity of an asset during the whole timespan of the itinerary. If parking places and gas stations are included in the planning then it is NP hard to find an optimal solution. This means that for long range tours an approximately optimal solution for refueling has to be given within an acceptable running time. Also the corridoring of the trucks is an important problem so that we try to optimize the performance, hence tours cannot be recalculated at each data arrival. The vehicle assignment part of this work is already finished and applied with very good results. The remaining part is subject of an ongoing research which started at January 2014. The company started to apply and test our product in the beginning of 2015 under increased human supervision. As a consequence of the project a large cost saving is anticipated by the company.

Suggested Citation

  • Csongor Gy. Csehi & Márk Farkas, 2017. "Truck routing and scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 791-807, December.
  • Handle: RePEc:spr:cejnor:v:25:y:2017:i:4:d:10.1007_s10100-016-0453-8
    DOI: 10.1007/s10100-016-0453-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-016-0453-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-016-0453-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Zhaowei & Lim, Andrew & Ma, Hong, 2009. "Truck dock assignment problem with operational time constraint within crossdocks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 105-115, January.
    2. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    3. Chen, Lu & Langevin, André & Lu, Zhiqiang, 2013. "Integrated scheduling of crane handling and truck transportation in a maritime container terminal," European Journal of Operational Research, Elsevier, vol. 225(1), pages 142-152.
    4. Zapfel, Gunther & Wasner, Michael, 2002. "Planning and optimization of hub-and-spoke transportation networks of cooperative third-party logistics providers," International Journal of Production Economics, Elsevier, vol. 78(2), pages 207-220, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tibor Csendes & Csanád Imreh & József Temesi, 2017. "Editorial," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 739-741, December.
    2. Duygu Üçüncü & Süreyya Akyüz & Erdal Gül, 2024. "A novel auto-pruned ensemble clustering via SOCP," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(3), pages 819-841, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coşar Gözükırmızı & Metin Demiralp, 2019. "Solving ODEs by Obtaining Purely Second Degree Multinomials via Branch and Bound with Admissible Heuristic," Mathematics, MDPI, vol. 7(4), pages 1-23, April.
    2. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    3. L. Michel & A. Shvartsman & E. Sonderegger & P. Hentenryck, 2011. "Optimal deployment of eventually-serializable data services," Annals of Operations Research, Springer, vol. 184(1), pages 273-294, April.
    4. Park, Hyeongjun & Park, Dongjoo & Jeong, In-Jae, 2016. "An effects analysis of logistics collaboration in last-mile networks for CEP delivery services," Transport Policy, Elsevier, vol. 50(C), pages 115-125.
    5. Amine Lamine & Mahdi Khemakhem & Brahim Hnich & Habib Chabchoub, 2016. "Solving constrained optimization problems by solution-based decomposition search," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 672-695, October.
    6. H. Khorshidian & M. Akbarpour Shirazi & S. M. T. Fatemi Ghomi, 2019. "An intelligent truck scheduling and transportation planning optimization model for product portfolio in a cross-dock," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 163-184, January.
    7. Weiqiang Pan & Zhilong Shan & Ting Chen & Fangjiong Chen & Jing Feng, 2016. "Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 297-305, October.
    8. Drexl, Andreas, 1990. "Scheduling of project networks by job assignment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 247, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Yi-Feng Hung & Wei-Chih Chen, 2011. "A heterogeneous cooperative parallel search of branch-and-bound method and tabu search algorithm," Journal of Global Optimization, Springer, vol. 51(1), pages 133-148, September.
    10. Peter Bodnar & René de Koster & Kaveh Azadeh, 2017. "Scheduling Trucks in a Cross-Dock with Mixed Service Mode Dock Doors," Transportation Science, INFORMS, vol. 51(1), pages 112-131, February.
    11. Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
    12. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    13. Tierney, Kevin & Voß, Stefan & Stahlbock, Robert, 2014. "A mathematical model of inter-terminal transportation," European Journal of Operational Research, Elsevier, vol. 235(2), pages 448-460.
    14. Konur, Dinçer & Golias, Mihalis M., 2013. "Cost-stable truck scheduling at a cross-dock facility with unknown truck arrivals: A meta-heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 71-91.
    15. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Zhaowei Miao & Feng Yang & Ke Fu & Dongsheng Xu, 2012. "Transshipment service through crossdocks with both soft and hard time windows," Annals of Operations Research, Springer, vol. 192(1), pages 21-47, January.
    17. Fonseca, Gabriela B. & Nogueira, Thiago H. & Ravetti, Martín Gómez, 2019. "A hybrid Lagrangian metaheuristic for the cross-docking flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 275(1), pages 139-154.
    18. Thomas L. Morin & Roy E. Marsten, 1974. "Brand-and-Bound Strategies for Dynamic Programming," Discussion Papers 106, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    19. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    20. Claudia R. Rosales & Michael J. Fry & Rajesh Radhakrishnan, 2009. "Transfreight Reduces Costs and Balances Workload at Georgetown Crossdock," Interfaces, INFORMS, vol. 39(4), pages 316-328, August.

    More about this item

    Keywords

    Routing; Logistics; Scheduling; Truck;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:25:y:2017:i:4:d:10.1007_s10100-016-0453-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.