IDEAS home Printed from https://ideas.repec.org/a/spr/binfse/v6y2014i5p261-266.html
   My bibliography  Save this article

Big Data

Author

Listed:
  • Michael Schermann
  • Holmer Hemsen
  • Christoph Buchmüller
  • Till Bitter
  • Helmut Krcmar
  • Volker Markl
  • Thomas Hoeren

Abstract

“Big data” describes technologies that promise to fulfill a fundamental tenet of research in information systems, which is to provide the right information to the right receiver in the right volume and quality at the right time. For information systems research as an application-oriented research discipline, opportunities, and risks arise from using big data. Risks arise primarily from the considerable number of resources used for the explanation and design of fads. Opportunities arise because these resources lead to substantial knowledge gains, which support scientific progress within the discipline and are of relevance to practice as well. From the authors’ perspective, information systems research is ideally positioned to support big data critically and use the knowledge gained to explain and design innovative information systems in business and administration – regardless of whether big data is in reality a disruptive technology or a cursory fad. The continuing development and adoption of big data will ultimately provide clarity on whether big data is a fad or if it represents substantial progress in information systems research. Three theses also show how future technological developments can be used to advance the discipline of information systems. Technological progress should be used for a cumulative supplement of existing models, tools, and methods. By contrast, scientific revolutions are independent of technological progress. Copyright Springer Fachmedien Wiesbaden 2014

Suggested Citation

  • Michael Schermann & Holmer Hemsen & Christoph Buchmüller & Till Bitter & Helmut Krcmar & Volker Markl & Thomas Hoeren, 2014. "Big Data," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(5), pages 261-266, October.
  • Handle: RePEc:spr:binfse:v:6:y:2014:i:5:p:261-266
    DOI: 10.1007/s12599-014-0345-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s12599-014-0345-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s12599-014-0345-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saiz, Albert & Salazar-Miranda, Arianna, 2023. "Understanding Urban Economies, Land Use, and Social Dynamics in the City: Big Data and Measurement," IZA Discussion Papers 16501, Institute of Labor Economics (IZA).
    2. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    3. Hangzhou Yang & Huiying Gao, 2018. "Toward Sustainable Virtualized Healthcare: Extracting Medical Entities from Chinese Online Health Consultations Using Deep Neural Networks," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    4. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    5. Irresberger, Felix & Mühlnickel, Janina & Weiß, Gregor N.F., 2015. "Explaining bank stock performance with crisis sentiment," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 311-329.
    6. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    7. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    8. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    9. Mingxiao Dai, 2024. "How to Enhance Public Participation in Environmental Governance? Evidence from China," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    10. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    11. Chauvet, Marcelle & Gabriel, Stuart & Lutz, Chandler, 2016. "Mortgage default risk: New evidence from internet search queries," Journal of Urban Economics, Elsevier, vol. 96(C), pages 91-111.
    12. Tom Coupé, 2022. "Who is the most sought‐after economist? Ranking economists using Google Trends," Southern Economic Journal, John Wiley & Sons, vol. 89(2), pages 611-642, October.
    13. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    14. Markowitz, Sara & Nesson, Erik & Robinson, Joshua J., 2019. "The effects of employment on influenza rates," Economics & Human Biology, Elsevier, vol. 34(C), pages 286-295.
    15. Jialiang Liu & Sumihiro Suzuki, 2022. "Real-Time Detection of Flu Season Onset: A Novel Approach to Flu Surveillance," IJERPH, MDPI, vol. 19(6), pages 1-9, March.
    16. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    17. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    18. Nikoletta Poutachidou & Stephanos Papadamou, 2021. "The Effect of Quantitative Easing through Google Metrics on US Stock Indices," IJFS, MDPI, vol. 9(4), pages 1-19, October.
    19. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    20. Anastasiou, Dimitris & Ballis, Antonis & Drakos, Konstantinos, 2022. "Constructing a positive sentiment index for COVID-19: Evidence from G20 stock markets," International Review of Financial Analysis, Elsevier, vol. 81(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:6:y:2014:i:5:p:261-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.