IDEAS home Printed from https://ideas.repec.org/a/spr/apjors/v3y2019i1d10.1007_s41685-018-0090-4.html
   My bibliography  Save this article

Regional analyses of water use in Japanese paddy rice cultivation using modified water footprint indexes

Author

Listed:
  • Susumu Uchida

    (Ibaraki University)

Abstract

Water use in paddy rice cultivation was evaluated from the perspective of the environmental impact of water resource consumption for seven regions in Japan. Water resources can be appropriately discussed on a flow basis, and the impact of water consumption depends on the available water flow, which varies largely by time and location, in addition to the amount of water consumption itself. In this study, differential and integral water footprints were used as the indexes for the analyses. These indexes were previously developed and can help draw conclusions regarding the continuous impact of consumption on the water resources on a flow basis, taking into account the regional and temporal conditions of water supply. The results showed that the impact of water consumption was higher in regions with less amount of river flow. In particular, a large variation of impact, with temporally high values, was observed in such regions. These results suggest the necessity of water management on the basis of not only total or average water flow, but also temporal variation.

Suggested Citation

  • Susumu Uchida, 2019. "Regional analyses of water use in Japanese paddy rice cultivation using modified water footprint indexes," Asia-Pacific Journal of Regional Science, Springer, vol. 3(1), pages 155-175, February.
  • Handle: RePEc:spr:apjors:v:3:y:2019:i:1:d:10.1007_s41685-018-0090-4
    DOI: 10.1007/s41685-018-0090-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41685-018-0090-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41685-018-0090-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wopereis, M. C. S. & Bouman, B. A. M. & Kropff, M. J. & ten Berge, H. F. M. & Maligaya, A. R., 1994. "Water use efficiency of flooded rice fields I. Validation of the soil-water balance model SAWAH," Agricultural Water Management, Elsevier, vol. 26(4), pages 277-289, December.
    2. Bouwer, Herman, 2000. "Integrated water management: emerging issues and challenges," Agricultural Water Management, Elsevier, vol. 45(3), pages 217-228, August.
    3. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    2. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    3. Sang-Hyun Lee & Makoto Taniguchi & Rabi H. Mohtar & Jin-Yong Choi & Seung-Hwan Yoo, 2018. "An Analysis of the Water-Energy-Food-Land Requirements and CO 2 Emissions for Food Security of Rice in Japan," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    4. Liu, Chen-Wuing & Chen, Shih-Kai & Jou, Shew-Wen & Kuo, Sheng-Feng, 2001. "Estimation of the infiltration rate of a paddy field in Yun-Lin, Taiwan," Agricultural Systems, Elsevier, vol. 68(1), pages 41-54, April.
    5. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    6. Li, Lu & Zhou, Yan & Li, Mo & Cao, Kaihua & Tao, Yanhuai & Liu, Yangdachuan, 2022. "Integrated modelling for cropping pattern optimization and planning considering the synergy of water resources-society-economy-ecology-environment system," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Antony, Edna & Singandhupe, R. B., 2004. "Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.)," Agricultural Water Management, Elsevier, vol. 65(2), pages 121-132, March.
    8. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    9. Boyu Wang & Xiang Gao, 2021. "Temporal and spatial variations of water resources constraint intensity on urbanization in the Shiyang River Basin, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10038-10055, July.
    10. Ik Kim & Kyung-shin Kim, 2019. "Estimation of Water Footprint for Major Agricultural and Livestock Products in Korea," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    11. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    12. Massey, J.H. & Reba, M.L. & Adviento-Borbe, M.A. & Chiu, Y.L. & Payne, G.K., 2022. "Direct comparisons of four irrigation systems on a commercial rice farm: Irrigation water use efficiencies and water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    13. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    14. Sacchidananda Mukherjee & Prakash Nelliyat, 2006. "Ground Water Pollution and Emerging Environmental Challenges of Industrial Effluent Irrigation: A Case Study of Mettupalayam Taluk, Tamilnadu," Working Papers 2006-07, Madras School of Economics,Chennai,India.
    15. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.
    16. Sauer, Timm & Havlik, Petr & Schneider, Uwe A. & Kindermann, Georg E. & Obersteiner, Michael, 2008. "Agriculture, Population, Land and Water Scarcity in a Changing World – The Role of Irrigation," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44271, European Association of Agricultural Economists.
    17. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    18. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    19. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    20. Banejad, H. & Souri, H., 2003. "Sewage dilution as a management alternative in agricultural reuse of wastewater," IWMI Books, Reports H033352, International Water Management Institute.

    More about this item

    Keywords

    Water footprint; Rice; Water resource; Environmental impact;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:apjors:v:3:y:2019:i:1:d:10.1007_s41685-018-0090-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.