IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422003559.html
   My bibliography  Save this article

Integrated modelling for cropping pattern optimization and planning considering the synergy of water resources-society-economy-ecology-environment system

Author

Listed:
  • Li, Lu
  • Zhou, Yan
  • Li, Mo
  • Cao, Kaihua
  • Tao, Yanhuai
  • Liu, Yangdachuan

Abstract

Cropping patterns are essential for the sustainable development of regional agriculture and land conservation. To solve the complex system problems of the multidimensional coordination of water resources, society, economy, environment and ecology, and dynamics in the decision-making of cropping pattern adjustment, this paper proposes a multidimensional cooperative optimization modeling method for cropping patterns based on system dynamics. The system association and dynamic evolution trends of the driving elements are simulated and coupled to the multidimensional multitarget planning model, which can realize the multidimensional optimization and dynamic prediction of cropping patterns in different regions. The proposed method is applied to empirical research in Heilongjiang Province. The results showed that optimization of the cropping pattern contributed to an increase in the cooperative development of the system in 2016, 2025, and 2030 by 24.14 %, 42.36 % and 51.36 %, respectively, evolving from a state of barely cooperative to a state of high-quality cooperative. This indicates that the model helps to promote the sustainable use of cultivated land. The optimization improved the crop diversity, with a variety of food crops planted in most regions. The optimization results of the spatial network consisting of 182 irrigation areas show that the resource utilization efficiency, economic benefits, environmental pollution situation, and resource allocation fairness improved by approximately 20 % in different partitions. The model can reflect the dynamics, balance conflicts of the multidimensional targets of cropping patterns, and promote the sustainable use of cultivated land. It can be used as a general model and is applicable to most areas where other cultivation occupies an important place.

Suggested Citation

  • Li, Lu & Zhou, Yan & Li, Mo & Cao, Kaihua & Tao, Yanhuai & Liu, Yangdachuan, 2022. "Integrated modelling for cropping pattern optimization and planning considering the synergy of water resources-society-economy-ecology-environment system," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003559
    DOI: 10.1016/j.agwat.2022.107808
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Li & Du, Yu & Wu, Shuang & Zhang, Zhaolong, 2021. "Evaluation of the agricultural water resource carrying capacity and optimization of a planting-raising structure," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Li, Mo & Cao, Xiaoxu & Liu, Dong & Fu, Qiang & Li, Tianxiao & Shang, Ruochen, 2022. "Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach," Agricultural Water Management, Elsevier, vol. 259(C).
    3. Solinas, Stefania & Tiloca, Maria Teresa & Deligios, Paola A. & Cossu, Marco & Ledda, Luigi, 2021. "Carbon footprints and social carbon cost assessments in a perennial energy crop system: A comparison of fertilizer management practices in a Mediterranean area," Agricultural Systems, Elsevier, vol. 186(C).
    4. Stasiv, Oleh & Kachmar, Oksana & Vavrynovych, Oksana & Arabska, Ekaterina, 2021. "Ecological and economic efficiency of growing maize for grain in short-rotation cultivation of the Western region," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 7(2), June.
    5. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    6. Mohd Zabid Mohd Faeid & Norhaslinda Zainal Abidin & Shri Dewi Applanaidu, 2020. "Determining optimal replanting rate in palm oil industry, Malaysia: a system dynamics approach optimal policy search in oil palm plantation feedback loops using system dynamics optimisation," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 12(2), pages 136-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donglin Ren & Liang Liu & Xiujuan Gong & Pan Jiang & Shu Liu & Yirui Yang & Ruifeng Jin, 2022. "Effect Evaluation of Ecological Compensation for Strategic Mineral Resources Exploitation Based on VIKOR-AISM Model," Sustainability, MDPI, vol. 14(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yingshan & Fu, Qiang & Singh, Vijay P. & Ji, Yi & Li, Mo & Wang, Yijia, 2023. "Optimization of agricultural soil and water resources under fuzzy and random uncertainties: Synergy and trade-off between equity-based economic benefits, nonpoint pollution and water use efficiency," Agricultural Water Management, Elsevier, vol. 281(C).
    2. Li, Mo & Chen, Yingshan & Liu, Dong & Xue, Min & Wang, Yijia & Fu, Qiang, 2024. "Synergetic management of the water-energy-food nexus for cropland ecosystems under climate change: Toward a multistakeholder-based systematic optimization approach," Renewable Energy, Elsevier, vol. 220(C).
    3. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    4. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    5. Chao Zhang & Ruifa Hu, 2022. "Adoption of Direct Seeding, Yield and Fertilizer Use in Rice Production: Empirical Evidence from China," Agriculture, MDPI, vol. 12(9), pages 1-15, September.
    6. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    7. Sang-Hyun Lee & Makoto Taniguchi & Rabi H. Mohtar & Jin-Yong Choi & Seung-Hwan Yoo, 2018. "An Analysis of the Water-Energy-Food-Land Requirements and CO 2 Emissions for Food Security of Rice in Japan," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    8. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    9. Wang, Taishan & Zhang, Junlong & You, Li & Zeng, Xueting & Ma, Yuan & Li, Yongping & Huang, Guohe, 2023. "Optimal design of two-dimensional water trading considering hybrid “three waters”-government participation for an agricultural watershed," Agricultural Water Management, Elsevier, vol. 288(C).
    10. Boyu Wang & Xiang Gao, 2021. "Temporal and spatial variations of water resources constraint intensity on urbanization in the Shiyang River Basin, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10038-10055, July.
    11. Ik Kim & Kyung-shin Kim, 2019. "Estimation of Water Footprint for Major Agricultural and Livestock Products in Korea," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    12. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).
    13. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    14. Yansong Zhang & Yujie Wei & Yu Mao, 2023. "Sustainability Assessment of Regional Water Resources in China Based on DPSIR Model," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    15. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    16. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    17. Cai, Siyang & Zuo, Depeng & Wang, Huixiao & Xu, Zongxue & Wang, GuoQing & Yang, Hong, 2023. "Assessment of agricultural drought based on multi-source remote sensing data in a major grain producing area of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    18. Yu Zhang & Jin-he Zhang & Qing Tian, 2021. "Virtual Water Trade in the Service Sector: China’s Inbound Tourism as a Case Study," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    19. Yi Lou & Guanyi Yin & Yue Xin & Shuai Xie & Guanghao Li & Shuang Liu & Xiaoming Wang, 2021. "Recessive Transition Mechanism of Arable Land Use Based on the Perspective of Coupling Coordination of Input–Output: A Case Study of 31 Provinces in China," Land, MDPI, vol. 10(1), pages 1-27, January.
    20. Zhao, Jing & Elmore, Andrew J. & Lee, Janice Ser Huay & Numata, Izaya & Zhang, Xin & Cochrane, Mark A., 2023. "Replanting and yield increase strategies for alleviating the potential decline in palm oil production in Indonesia," Agricultural Systems, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.